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A B S T R A C T   

The Coronavirus Disease 2019 (COVID-19) pandemic is still wreaking havoc worldwide. Therefore, the urgent 
need for efficient treatments pushes researchers and clinicians into screening effective drugs. Drug repurposing 
may be a promising and time-saving strategy to identify potential drugs against this disease. Here, we developed 
a novel computational approach, named Drug Target Set Enrichment Analysis (DTSEA), to identify potent drugs 
against COVID-19. DTSEA first mapped the disease-related genes into a gene functional interaction network, and 
then it used a network propagation algorithm to rank all genes in the network by calculating the network 
proximity of genes to disease-related genes. Finally, an enrichment analysis was performed on drug target sets to 
prioritize disease-candidate drugs. It was shown that the top three drugs predicted by DTSEA, including Ataluren, 
Carfilzomib, and Aripiprazole, were significantly enriched in the immune response pathways indicating the 
potential for use as promising COVID-19 inhibitors. In addition to these drugs, DTSEA also identified several 
drugs (such as Remdesivir and Olumiant), which have obtained emergency use authorization (EUA) for COVID- 
19. These results indicated that DTSEA could effectively identify the candidate drugs for COVID-19, which will 
help to accelerate the development of drugs for COVID-19. We then performed several validations to ensure the 
reliability and validity of DTSEA, including topological analysis, robustness analysis, and prediction consistency. 
Collectively, DTSEA successfully predicted candidate drugs against COVID-19 with high accuracy and reliability, 
thus making it a formidable tool to identify potential drugs for a specific disease and facilitate further 
investigation.   

1. Introduction 

On December 1, 2019, coronavirus disease 2019 (COVID-19) rapidly 
spread and became a global pandemic [1]. It is caused by severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) [2], a novel human 
coronavirus strain associated with a long evolutionary history in a bat 
host and a suspected spillover event into humans [3]. Despite the World 
Health Organization declaring the pandemic a public health emergency 
in its early stages, the high fatality rate [4] and high transmissibility [5] 
of COVID-19 make it challenging to control its spread. The public has 
placed immense pressure on researchers and clinicians to develop 
effective prevention and treatment methods. However, it typically takes 
a decade to develop and mass-produce a novel drug for the current 

pandemic with the assurance that it is safe and effective [6]. This delay is 
unacceptable and exacerbates the pandemic. 

Drug repurposing offers an alternative to the traditional drug 
development process, we can repurpose drugs for treating SARS-CoV-2 
infection with existing drugs. The major advantage of drug repurpos-
ing is its efficiency, which is a key drawback of the traditional drug 
development process. For example, Remdesivir was initially developed 
to treat hepatitis C [7] and Ebola [8] infections, but it was later approved 
to treat COVID-19 in various countries [9]. It only takes one year for 
Remdesivir to be approved for marketing, and its safety is not a major 
concern because it has already passed most of its validation stages. Thus, 
the repurposed drugs have known safety and pharmacological profiles. 
Experimental and computational methods are used to screen potential 

* Corresponding author. 
** Corresponding author. 

E-mail addresses: kqfangel@hrbmu.edu.cn (Q. Kong), hanjunwei@ems.hrbmu.edu.cn (J. Han).   
1 These authors contributed equally to this work. 

Contents lists available at ScienceDirect 

Computers in Biology and Medicine 

journal homepage: www.elsevier.com/locate/compbiomed 

https://doi.org/10.1016/j.compbiomed.2023.106969 
Received 13 December 2022; Received in revised form 27 March 2023; Accepted 19 April 2023   

mailto:kqfangel@hrbmu.edu.cn
mailto:hanjunwei@ems.hrbmu.edu.cn
www.sciencedirect.com/science/journal/00104825
https://www.elsevier.com/locate/compbiomed
https://doi.org/10.1016/j.compbiomed.2023.106969
https://doi.org/10.1016/j.compbiomed.2023.106969
https://doi.org/10.1016/j.compbiomed.2023.106969


Computers in Biology and Medicine 159 (2023) 106969

2

novel indications for existing drugs. The latter approach relies on 
large-scale biological data to yield a more robust and reliable result than 
the former [10]. To combat COVID-19 using the latter approach, 
determining the most suitable and efficient drug repurposing algorithm 
has become a significant challenge. 

Recently, several computational approaches have been used to assess 
the similarity between drugs and COVID-19 [11]. These approaches 
typically use chemical or protein structures, network-based algorithms, 
machine learning algorithms, and data mining techniques to identify 
novel potential treatment drugs. For example, machine-learning ap-
proaches are now underway to analyze massive amounts of public data 
to accurately predict the clinical outcomes of patients with COVID-19 
[12]. Even though the results of machine-learning approaches are 
encouraging, it is worth noticing that interpreting the fitted models can 
be much more challenging than the traditional methods [13]. 

Among various kinds of computational approaches, the structure- 
based approaches are the ones of the most widely adopted methods 
for screening novel drugs. This approach analyzes the similarities be-
tween the binding site of SARS-CoV-2 (such as ACE2) and drug struc-
tures [14,15], leveraging the abundance of 3D structures of drugs and 
receptor targets [16,17]. To address the deficiency in computing simi-
larity scoring matches, insertions, and deletions in sequence, the fuzzy 
logic-based computational method was proposed for achieving better 
predictive results in real-world applications [18]. However, targeting a 
single protein or gene oversimplifies disease progression and immune 
response, and also ignores the complex interactions between genes or 
proteins in biological systems. 

To offset the problems mentioned above, the network-based ap-
proaches offer a holistic perspective by integrating multiple sources of 
information from a holistic perspective. In biological networks, nodes 
can represent various types of information (such as genes, pathways, or 
drugs) that are not independent entities [19–22]. Instead, the nodes are 
connected by specific link types (such as interactions or modulations) 
depending on the type of network. We posit that identifying genes 
affected by COVID-19 in the network can be more accurate and sys-
tematic than through differential analysis of individual genes alone. 

In the study, we present a novel network-based drug repurposing 
method, named drug target set enrichment analysis (DTSEA), to identify 
candidate drugs against COVID-19 by integrating the network propa-
gation algorithm and enrichment analysis strategy. DTSEA first uses the 
random walk with restart (RWR) algorithm to calculate the network 
proximity that is distant from the disease-related genes in the large-scale 
human gene functional interaction network. This allows us to estimate 
the influence of the disease and accurately and systematically identify 
genes affected by COVID-19. The method then predicts drug-disease 
associations by calculating the enrichment scores of the drug target 
sets in the ranked gene list based on the network proximity to determine 
whether a drug is potent in treating COVID-19. The algorithm sheds 
light on a novel metric for measuring drug-disease distance and provides 
a unique insight into drug repurposing for combating human disease. 
We have wrapped the core function into an R package named DTSEA 
(Drug Target Set Enrichment Analysis), which is freely available on 
CRAN under the GPL-v2 license (https://CRAN.R-project.org/p 
ackage=DTSEA). 

2. Materials and methods 

2.1. Data preparation 

2.1.1. Identification of the disease-related genes 
We obtained the COVID-19 gene expression dataset from the Gene 

Expression Omnibus (GEO) database (ID: GSE183071) [23]. Because of 
local immune response could be key to determine the course of the 
systemic response and thus COVID-19 severity, the GSE183071 dataset 
focused on immune-related genes from patients affected by different 
COVID-19 severities. This collection comprises 156 samples from three 

different tissue types (blood, nasal, and saliva) among 77 distinct do-
nors. Given that gene expression varies between tissues and is 
tissue-specific, we only extracted the nasal tissue samples from the 
dataset. Ultimately, we obtained 37 disease samples and 13 controls to 
identify disease-related genes. 

We conducted Welch’s t-test with subsequent Benjamini-Hochberg 
correction (or the false discovery rate, FDR) to identify differentially 
expressed genes (DEGs) as COVID-19-related genes by comparing gene 
expression levels between disease and control samples. To avoid false 
positives, we considered only genes with FDR < 0.01 as DEGs. Addi-
tionally, to obtain a comprehensive understanding of the disease land-
scape, we included 11 genes (TLR4, NLRP3, MBL2, IL6, IL1RN, IL1B, 
CX3CR1, CCR5, AGT, ACE, and F2) associated with both COVID-19 and 
its three comorbidities (hypertension, diabetes mellitus, and coronary 
artery disease) proposed by Feng et al. [24]. 

We then acquired three distinct gene expression datasets to validate 
our results, which were collected from the GEO database (ID: 
GSE156544, GSE164805, and GSE177477). The detailed information of 
the three datasets is provided in Supplementary Table S1. We also 
collected 190 COVID-19-related genes of human from NCBI in June 
2022 (https://www.ncbi.nlm.nih.gov/gene/?term=coronavirus+relat 
ed+%5Bproperties%5D). 

2.1.2. Construction of a gene functional interaction network 
We collected human pathways from seven databases, including 

KEGG, Reactome, Biocarta, NCI, SPIKE, HumanCyc, and Panther. We 
then constructed an undirected human gene functional interaction 
network by integrating the gene relationships in the pathways, 
compromising 221,353 functional interactions (edges) and 12,836 
unique genes (nodes). This network was deposited in our DTSEAData 
package on GitHub (https://github.com/hanjunwei-lab/DTSEAData). 

2.1.3. Collecting the drug-related information 
The drug-related information used in this study includes: (1) clinical 

trial data of drugs, (2) drug medical indications, and (3) drug target 
information. We collected clinical trial data of drugs and drug in-
dications from the ChEMBL database (Version CHEMBL30, March 2022) 
[25], which provides 14 kilos of verified drugs, drug clinical trial data, 
and medical indications. Next, we retrieved drug-target interactions 
from both the ChEMBL and the DrugBank (Version 5.1.9, Jan 2022) [26] 
database, which resulted in 5,804 drugs and 17,155 drug-target in-
teractions. Moreover, we manually coded COVID-19-related symptoms 
(both Omicron variant and long COVID symptoms, as provided in Sup-
plementary Table 2) from the ChEMBL database to validate the pre-
diction results qualitatively. 

2.2. Study design of the DTSEA framework 

Our hypothesis posits that potential drug candidates for a specific 
disease (e.g., COVID-19) should be located near or in close proximity to 
the disease in the network. To determine whether a drug is effective 
against the chosen disease, we use DTSEA algorithm to assess the 
network proximity between drug targets and disease-related genes. 

The proposed DTSEA method involves four main steps for identifying 
candidate drugs for a given disease: (1) Map the disease-related genes 
into the network of gene functional interaction network. (2) Compute 
the distance between disease-related genes and other gene nodes by the 
random walk with restart (RWR) algorithm, then rank the nodes 
decreasingly based on the RWR result. (3) Map the drug target set of 
each drug to the ranked list to calculate the drug target set enrichment 
score (ES) through the GSEA approach, and then the resulting drug-wise 
ES scores indicate the mean distance towards the disease per drug. (4) 
Perform permutation analysis and sort the result list by the normalized 
ES (NES) and FDR, and then the drug candidates are filtered by the 
manually-coded criteria. The schematic overview of the DTSEA method 
is shown in Fig. 1. 
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2.2.1. Assessing the proximity between disease genes and other genes in the 
network 

RWR is the modified version of the standard random walk algorithm, 
which simulates an iterative random walker that starts from a set of 
source nodes and travels to its immediate neighbors, or returns to the 
source nodes at each time step in a graph. This algorithm could be used 
for quantifying the network proximity between any nodes in a network 
and a given set of nodes. Here, we adopted the RWR algorithm to assess 
the proximity between disease genes and other genes in the gene func-
tional interaction network (Fig. 1B). We shall define the RWR process 
with n nodes (COVID-19-related genes) in the network as: 

pt+1 =(1 − γ)Mpt + γp0 (1)  

where M is the column-normalized adjacency matrix with the network, 
pt = (pt

1, pt
2,…, pt

n)
′

is the visiting probability of each node at time step t, 

in which the i th element pt
i represents the probability of node i at time 

step t. p0 = (p0
1, p0

2,…, p0
n)

′

represents the initial probability vector of 
nodes, where the nodes in the restart set corresponding to COVID-19 
related genes are assigned as 1 and remaining nodes as 0, and which 
was then normalized to a unit vector. In this study, we set the restart 
probability γ = 0.7, because it had little effect on the RWR results be-
tween 0.1 and 0.9 [27]. After a certain number of iterations, the prob-
ability vector pt will eventually arrive at a stable state when the 
difference between pt+1 and pt decreases to less than 10− 10. The vector pt 

was then normalized according to the median of its elements. A gene i in 
the network with a larger value pt

i indicates it is more proximal the 
COVID-19-related gene nodes. A ranked gene list L was then constructed 
by descending pt . 

Fig. 1. A simple schematic of the DTSEA method. 
(A) Map the disease-related genes into the gene 
functional interaction network. The disease-related 
genes can be obtained from numerous publicly 
available databases, the Gene Expression Omnibus 
(GEO) database for expression profiles or the gene list 
from the disease-related gene database. After per-
forming the t-test, the differentially expressed genes 
(DEGs) can be identified and treated as disease- 
related genes. (B) Estimate the influence of disease- 
related genes in the network. The RWR approach 
calculated the proximity between disease genes and 
other genes, and then ranked the nodes decreasingly 
based on the RWR result. (C) Predict disease candi-
date drugs based on drug target set enrichment 
analysis. The drug target sets were respectively 
mapped to the ranked gene list to calculate the drug 
target set ESs, and ranked the drugs by NES.   
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2.2.2. Calculating the enrichment score of drug target set 
According to the DTSEA hypothesis, the effectiveness of a drug is 

maximized when its targets are within close proximity of the disease- 
related nodes in the network. To test this hypothesis, we respectively 
mapped the target genes of each drug to the ranked gene list L to 
determine whether target genes of a drug tend to occur toward the top of 
the list. In this case, the drug targets are close to the disease-related 
genes in the network, which may have a potential treatment effect on 
the disease. We used the weighted Kolmogorov-Smirnov (KS) statistics 
to calculate an ES of a drug target gene set that reflects the degree to 
which the drug target set is overrepresented at the top of the entire 
ranked list L. If the target genes of a drug cluster at the top of the list, the 
ES will be relative large (ES > 0). This statistic has been used in GSEA 
[28] previously to identify diseases related gene sets. In the paper, we 
used it as a statistic test of drug target gene set to prioritize disease 
candidate drugs. 

To assess the statistical significance (normal p-value) of an observed 
ES, we performed permutation test. Specifically, for a given drug i, we 
randomly sampled gene sets of the same size as the drug target gene sets 
from the ranked gene list L, and re-computed ES. This permutation 
process was repeated n times (we set n = 1000 in the study), and an 
empirical null distribution ESnull was obtain. The normal p-value was 
then estimated by comparing the observed ES with ESnull, and which was 
then adjusted by using false discovery rate (FDR) method [29]. Simul-
taneously, the normalized ES (NES) for each drug was also calculated as 
performed in the GSEA method. We used the fgsea package [30] to 
implement the above process. 

2.3. Measuring the performance of DTSEA 

We evaluated the performance of DTSEA using several quantitative 
and qualitative approaches. We first screened the predicted top drugs 
based on their indications. Second, we computed the network distances 
between the drug targets of each candidate drug and disease genes, and 
compared them with the DTSEA predictions to validate the primary 
hypothesis of DTSEA. Third, we assessed the robustness of DTSEA by 
randomly removing a certain proportion of the nodes and edges. 
Furthermore, we applied the DTSEA to multiple COVID-19 datasets and 
examined its predictive consistency. Finally, we extended the DTSEA 
algorithm to multiple breast cancer datasets to assess its effectiveness. 

2.3.1. The network separation metric 
We employed the network separation metric sAB to validate the 

extent of overlap between a potential drug target set (called module A) 
and disease-related gene sets (called module B). This metric compares 
the mean shortest distances between two modules and is defined as: 

sAB = dAB −
dA + dB

2
(2)  

where dAB is the mean shortest distance between module A and module 
B (between-module distance), and either dA or dB is the mean shortest 
distance within each module A and B (within-module distance). The 
shortest distance is the count or summed weight of all nodes in the most 
efficient path between two nodes. We can calculate the between-module 
distance dAB by averaging the shortest distances from each node in 
module A to module B. The within-module distance dA or dB can be 
derived similarly but differ slightly. In calculating the distance dA, we 
sequentially remove the nodes i from module A and compute the mean 
distance between i and module A excluding node i. Accordingly, the 
separation metric sAB < 0 indicates network overlap, whereas sAB > 0 
indicates non-overlap [31]. 

2.3.2. The discrimination of the method 
The receiver operating characteristic (ROC) curve was used to 

evaluate the accuracy of DTSEA. A ROC curve illustrates the trade-offs 

between true positive (benefits) and false positive (costs) [32], and 
the area under the curve (AUC) quantifies the trade-off. It is defined as: 

AUC =

∫ 1

x=0
TPR

(
FPR− 1(x)

)
dx (3)  

where the TPR = True Positive
True Positive+False Negative, and the FPR =

False Positive
False Positive+True Negative. 

Since treatment options for COVID-19 are limited and many drugs 
are still being investigated, we obtained the drugs that have entered 
clinical trial phase II or above from the ChEMBL database as the true 
positive set. To evaluate the discrimination power of the DTSEA method, 
we plotted a ROC curve based on the true positive set. This enables us to 
visualize the discrimination power of the DTSEA method. 

2.3.3. The overall prediction consistency across multiple datasets 
To validate our predictions, we employed the inter-rater concor-

dance (or agreement) method. The method measures the overall con-
sistency of predictions by assessing the agreement between multiple 
rows of data [33]. Initially, the inter-rater concordance is defined as the 
extent of agreement among multiple raters when rating the responses of 
the same cohort. Here, we shall consider the DTSEA per sample as a 
rating witness or a scoring machine (akin to the “judge” in the original 
concept) while the drugs as candidates. As a result, we adapted the 
inter-rater concordance method to validate the prediction performance 
of DTSEA. In this study, Kendall’s W and Cronbach’s alpha were utilized 
as independent statistics to determine the level of concordance. A high 
score indicates a strong level of agreement between multiple predictions 
for the same drugs. Conversely, a low score indicates that the predictions 
are inconsistent or heterogeneous. 

The first statistic utilized in this study was Kendall’s coefficient of 
concordance W, which ranges from 0 (no agreement) to 1 (complete 
agreement). We assumed that there were n objects (drugs) and m judges 
(datasets predicted by DTSEA), which formed a matrix (M) with n rows 
and m columns. The elements of matrix M were the NESs calculated by 
DTSEA. The W is defined as: 

W =
12
∑n

i=1(Ri − M)
2

m2(n3 − n)
(4)  

where the Ri denotes the sum of the rank ri for each row i, and the mean 
value of total ranks R is M = 1

n
∑n

i=1Ri. 
In contrast, Kendall’s W measures the consistency of the rank or the 

relative position across multiple predictions. Nevertheless, Kendall’s W 
does not provide a complete picture of the variance and error [34]. To 
complement the results obtained from Kendall’s W, we then employ 
Cronbach’s α to measure the agreement between multiple judges 
(datasets predicted by DTSEA). Cronbach’s α is a popular measurement 
in social sciences [35] and clinical research [36]. The α is defined as 
[37]: 

α=
k

k − 1

(

1 −
∑k

j=1σ2
j

σ2
X

)

(5)  

where k denotes the number of columns (judges) in the scoring matrix 
M, σ2

X denotes the variance of the sum of each row (each drug), 
∑k

j=1σ2
j 

denotes the sum of the variances of each column j. 

3. Results 

3.1. Identification of COVID-19 candidate drugs based on DTSEA 

We first applied DTSEA to COVID-19 gene expression datasets ob-
tained from GSE183071 [23], and the entire results were provided in 
Supplementary Table S3. Among the top 50 most significant drugs 
identified, we observed that 24 drugs were being investigated (including 
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through case report (CR), silicon prediction (SILC), review (RV) in the 
literature, vitro experiment (VITRO), and vivo experiment (VIVO)), 
while 18 drugs were being evaluated in clinical trials (phases I-IV 
(P1–P4)) (Fig. 2A). Through comprehensive analysis, only 16% of these 
drugs have not been previously studied in the context of COVID-19 
(Fig. 2B). These results indicate that our method could effectively 
recall COVID-19-related drugs. 

Next, we focused on the top ten most significant drugs (Table 1). 
Interestingly, nine out of ten drugs have been studied experimentally, 
with three of them being evaluated in clinical trials. In particular, Ata-
luren, a COVID-19 antagonist with the highest potency, received con-
ditional FDA approval in 2014 for treating Duchenne muscular 
dystrophy and cystic fibrosis [38]. The drug works by inhibiting the 
release factor complex (RFC) termination activity, acting at or before the 
hydrolysis step of RNA strands [39]. Despite the previous findings 
indicating that RFC termination was not an effective target against 
SARS-CoV-2, Ataluren showed a 46% inhibition in the cell experiment 
[40]. The associations between these drugs and COVID-19 are presented 
in Supplementary Table S4. 

Since the platform GPL30569 only sequences immune-related genes 
and the conductors of GSE183071 focused on immune response [23], 
the expression dataset is relatively small and unable to fully explain the 
effect of the drug visually. Therefore, we adopted GSE164805, a 
genome-wide sequencing dataset that covers all drug targets to 
demonstrate the inhibition effects of Ataluren. We drew an expression 
heatmap in Fig. 3A, with the samples in GSE164805 as columns and the 
Ataluren-related genes (its targets and neighbors in the gene functional 
network) as rows. The heatmap clearly shows clusters of expression. 
Therefore, we divided the clusters into four categories and performed 
enrichment analyses for each category using the pathway data provided 
by KEGG. 

The Ataluren-related genes are significantly enriched in several 
pathways. The effectiveness of Ataluren is supported by the enrichment 
of three out of four clusters (clusters #1, #3, and #4) in the Coronavirus 
disease — COVID-19 pathway, which suggests that the Ataluren-related 
genes directly impact the disease. Other enriched pathways, such as 
ribosome pathway (hsa03010; cluster #1), Notch signaling pathway 
(hsa04330; cluster #2), MAPK signaling pathway (hsa04010; cluster 
#2), and nucleotide excision repair pathway (hsa03420; cluster #3), 
were essential to the human immune response, which plays a central 
role in the inflammatory response [42–45]. Hence, the first candidate 
drug, Ataluren, may be a potential treatment for COVID-19. 

The second potent COVID-19 drug, Carfilzomib, is a highly effective 
treatment for adults with relapsed or refractory multiple myeloma [46]. 
By inhibiting the chymotrypsin-like catalytic protease, Carfilzomib 
shows efficiently reduces cellular proliferation. Some evidence suggests 
that Carfilzomib is one of the potential inhibitors of SARS-CoV-2 main 

protease [47]. The Carfilzomib-related genes are significantly enriched 
in several immunological reaction pathways and virus reaction path-
ways (shown in 3B), including the homologous recombination pathway 
(hsa03440; cluster #1), the antigen processing and presentation 
pathway (hsa04612; cluster #2), and the Huntington’s disease pathway 
(hsa05016; cluster #4). 

The third potent COVID-19 drug, Aripiprazole, is an atypical treat-
ment for various mood and psychotic disorders, such as schizophrenia, 
bipolar disorder, major depressive disorder, and agitation. Aripiprazole 
stabilizes the levels of neurotransmitters to improve psychotic symp-
toms and has a high affinity for and acts as a partial agonist for at least 
one serotonin and dopamine receptor [48]. Recent studies have reported 
the role of the serotonin family in the immune response to specific viral 
infections [49–51], including human immunodeficiency virus (HIV), 
reovirus, and chikungunya virus. Consistent with these studies, 
Aripiprazole-related genes are significantly enriched at the Dopami-
nergic synapse pathway (hsa04728; cluster #2) and several immuno-
logical pathways, including the chemokine signaling pathway 
(hsa04062; clusters #2, #3, and #4), and the Calcium signaling 
pathway (hsa04020; clusters #1, #2, and #4) (Fig. 3C). Therefore, these 
drugs could be considered potential candidates for further investigations 
into their efficiency in treating COVID-19. 

3.2. Evaluation of the performance of DTSEA 

3.2.1. Evaluating the network proximity between drug targets and disease 
genes 

In the gene functional network, the DTSEA assumes that the most 
effective drugs are those with a closer affinity to the specified disease 
genes. Based on this assumption, the DTSEA suggests that a drug with a 
large ES should have a shorter distance between the drug targets and 
disease genes in the gene functional interaction network. 

The first criterion we used was the shortest path length among the 
drug-disease module pairs. Based on the results in the previous subsec-
tion, we manually created six artificial groups to compare the mean 
distance between the targets of each drug in a specific group and disease 
genes. The six categories were named alphabetically, which correspond 
to the top 50 drugs (Group A), the top 51 to 200 drugs (Group B), the top 
201 to 400 drugs (Group C), the positive ES drugs with a not significant 
p-value (p > .015 and p < 0.40; Group D), the positive ES drugs with a 
nearly random p-value (p > 0.50; Group E), and the negative ES drugs 
(Group F), respectively. We calculated the average distances and 
assumed the variances were unequal, so we performed Welch’s one-way 
ANOVA test. 

It revealed that (Fig. 4A) the main effect was statistically significant 
and substantial across the drug groups (F = 413.4, p = 5.79e − 101, 
η2 = 0.56). Then, we used the post hoc Games-Howell analysis to 

Fig. 2. Summary of the top 50 predicted drugs. (A) Histogram shows the drug counts of current status of the top 50 predicted drugs. (B) Pie chart shows the 
percentages of current status of the top 50 predicted drugs. 
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compare the average distances between each pair of drug groups, the 
results showed that each pair of groups differed significantly at p <

0.001 except for the group pairs of Group A-B (p = .978), Group A-C 
(p = 0.162), and Group B–C (p = 0.309). These results suggest that the 
top drugs predicted by DTSEA are close to COVID-19 related genes in the 
network. Notably, the trend analysis in Fig. 4A demonstrated that the 
linear model was significant at the monomial level (p = 7.14e − 131) 
and the quadratic level (p = 7.47e − 26) with a substantial explanatory 
power of R2 = 0.56, but nonsignificant at the cubic level (p = 0.542), 
indicating that the distance increases as the ranks of the results predicted 
by DTSEA get further backward. 

Next, we quantified the network proximity between drug targets and 
disease genes in the network by using the network separation metric 
(mentioned in Methods), which is the main idea of the complementary 
exposure component analysis [52]. Specification, for each drug in each 
group (A-F), we respectively calculated network separation metric be-
tween drug targets gene set (called drug module) and disease gene set 
(called disease module) in the network. Through comparing the network 
separation metric across all the drug groups, the one-way ANOVA 
showed a significant but small effect (F = 36.4, p = 1.92e − 30, η2 =

0.07, Fig. 4B). Moreover, the post hoc Games-Howell test indicated that 
each pair of drug groups differed significantly at p < 0.001 except for 
the group pairs of Group C-D (p = 1.00), Group C-E (p = 0.18), and 
Group E-F (p = 0.30), demonstrating that DTSEA predicted drugs have a 
close network-based distance with COVID-19 related genes. We further 
performed a trend analysis on the linear model and observed that the 
model was significant at the monomial level (p = 1.90e − 20), the 
quadratic level (p = 0.011), and the cubic level (p = 0.026), indicating a 
positive correlation between the prediction order and the separation 
metric. Consistent with the original hypothesis of the DTSEA, the above 
results indicate that DTSEA is reliable and meets the topological 
assumptions. 

3.2.2. Evaluating the robustness of DTSEA 
As mentioned above, the converging evidence strongly supports the 

effectiveness of the DTSEA in network topology. However, the question 
remains as to whether DTSEA can maintain its performance when facing 
uncertainty and implausible alternative hypotheses [53]. To evaluate 
the robustness of the method, we conducted simulations involving five 
types of node failures and five types of edge failures with 50 repetitions 
under each condition. In each simulation, we randomly eliminated a 
certain percentage of nodes or edges. 

The simulation experiment revealed that edge and node deletion 
were effective methods for assessing robustness, and were relatively 
simple to execute. Thus, we generated uncertainties by deleting random 
edges and nodes. After constructing the uncertainty models, we applied 

DTSEA to the pruned networks. We then compared the top 50 and 100 
predicted drug lists generated from the pruned graphs with the un-
pruned graph. As shown in Fig. 4C, the percentage of overlapped drugs is 
relatively stable regardless of the amount of pruning. Even if we 
removed half of the edges or nodes in the network, nearly half of the 
original predictions were preserved, indicating the high robustness of 
DTSEA. 

3.2.3. Evaluating the reproducibility and accuracy of DTSEA 
Several studies have identified heterogeneous genes associated with 

COVID-19 [54]. One possible explanation for this heterogeneity is those 
innate and adaptive immune responses to viruses caused by human 
genetic variants [55]. Given the individual differences mentioned 
above, it is essential to evaluate the reproducibility of DTSEA by 
comparing it with other COVID-19 datasets. We shall define one disease 
dataset as a pipeline. Until now, we have presented the prediction results 
in a single pipeline. The following validation is performed to assess the 
reproducibility of DTSEA across different pipelines. 

We applied DTSEA to five datasets (pipelines), four of which were 
expression profiles obtained from the GEO database. The other was a 
COVID-19-related gene list collected from NCBI (described in Methods). 
Initially, we identified the top 50 drugs predicted by DTSEA from each 
dataset and then intersected these drugs to obtain a set of 19 drugs that 
appeared in at least three of the result sets (see Supplementary 
Table S5). As shown in Fig. 5A and 5B, approximately 79% (15/19) of 
these drugs were either under investigation or in clinical trials for 
COVID-19. Furthermore, the Venn diagram in Fig. 5C indicates that the 
predictions were reasonably consistent. 

We then evaluated the consistency of predictions for each pair of five 
pipelines as described in Methods section. As shown in Fig. 5D, the 
overall consistency was high (α = 0.877, W = 0.662), indicating a 
strong interdependence among the result pipelines. Furthermore, we 
observed significant moderate to high pairwise correlations. Then we 
evaluated and compared the prediction performance of DTSEA across 
five different pipelines by analyzing ROC curve. The AUC values for all 
five pipelines exceeded 0.85 (Fig. 5E), indicating that there is a greater 
than 85% likelihood of identifying a potential drug-disease association 
using DTSEA. The results of the five different pipelines provide insight 
into the reliability of DTSEA across various pipelines. 

3.3. Extended analysis for single target drugs 

Due to the high sensitivity and reliability of DTSEA, we obtained 
promising prediction results in the preceding steps. However, when only 
one gene was available for certain drugs in step 3 of the DTSEA work-
flow (left part of Fig. 1C), the enrichment result produced by GSEA was 

Table 1 
List of the top 10 compounds and their indications in the prediction set using GSE183071.  

DrugBank ID Name Main indications Evidence ID LOE NES FDR 

DB05016 Ataluren Duchenne muscular dystrophy 34904435* VITRO 3.208 8.715e-25 
DB08889 Carfilzomib Multiple myeloma 32315171* SILC 3.113 2.011e-19 
DB00188 Bortezomib Multiple myeloma 33551422* CR 3.113 2.011e-19 
DB09570 Ixazomib Neoplasms 35409348* VITRO 3.113 2.011e-19 
DB11991 Oprozomib Neoplasms   3.113 2.011e-19 
DB12010 Fostamatinib Hemorrhage; thrombocytopenia NCT04579393# P2 2.800 2.868e-28 
DB00201 Caffeine ADHD; pain; apnea; migraine disorder 33094705* SILC 2.772 7.068e-11 
DB00806 Pentoxifylline Cardiovascular disease NCT04433988# P1 2.761 7.068e-11 
DB01238 Aripiprazole Major depressive disorder; autistic disorder; bipolar disorder; schizophrenia 33990069* CR 2.684 6.213e-10 
DB01017 Minocycline Infections; periodontitis; rosacea; conjunctivitis; acne vulgaris; psittacosis; fever NCT05077813# P2 2.671 1.094e-09 

Note: In the table, the levels of evidence (LOE) rating for the investigation process among the predicted drugs is based on the following criterions: case report (CR), 
silicon prediction (SILC), review (RV) in literatures, vitro experiment (VITRO), vivo experiment (VIVO), and clinical trial phases I-IV (P1–P4), which incorporates the 
multiple perspectives illustrated by Burns et al. [41]. Furthermore, if the presented drug is under clinical trials, then the maximum phase the drug has reached will be 
shown here. The column Evidence ID represents the reference to the LOE. In this column, if the corresponding drug is under the clinical trial phases, then the registered 
IDs on clinical trials were provided; otherwise, PubMed IDs were provided. 
Note *: PubMed ID. 
Note #: Clinical trail ID. 
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unreliable. The GSEA achieves maximum power by analyzing a set of 
genes (gene set) rather than a single gene. Thus, no reliable result is 
obtained if only one gene is present in the gene set [28,56]. As a result, 
we only retained multi-target drugs, while eliminating single-target 
drugs. 

We observed that over half of the drugs in our dataset had only one 
target (see Fig. 6A). As a result, we manually extended our local drug 
target database using this portion of data. However, we only validated 
the prediction results for a limited number of drugs in this part. These 
drugs may receive approval documents, emergency use authorizations, 
or results in phase 3 clinical trials. Firstly, we created a list of candidates 
to be evaluated using the thumb rule (see Supplementary Table S6). We 
then collected the predicted target set for each drug from ChEMBL and 
conducted DTSEA on these drugs. We obtained positive results for all 
drugs except Propofol (Fig. 6B). 

3.4. Extended analysis for breast cancer 

In the previous section, we utilized multiple validation methods to 
assess the effectiveness of DTSEA in specific COVID-19 sets. We then 
evaluated whether DTSEA could identify candidate drugs for other 
diseases to assess its generalization. Specifically, we applied DTSEA to 
six breast cancer datasets, comprising four DEG sets identified from GEO 
breast cancer gene expression datasets (ID: GSE20711, GSE15852, 
GSE42568, and GSE10780), as well as two other breast cancer-related 
gene sets acquired from the Online Mendelian Inheritance in Man 
(OMIM) database and the Candidate Cancer Gene Database (CCGD). 

We first assessed the correlation coefficient between prediction re-
sults among different pipelines to validate the consistency and validity 
of predictions. We observed a high level of consistency in these pre-
dictions among six datasets (Fig. 7A, W = 0.625, Cronbach’s α =

0.847), with significant moderate to high pairwise correlations. 
We then assessed the validity of the prediction results using ROC 

Fig. 3. Visualization of Ataluren, Carfilzomib, 
and Aripiprazole. (A) The left half plots the drug 
chemical structure and drug target gene set enrich-
ment analysis of Ataluren. The right half plots the 
heatmap of Ataluren-related genes (its targets and 
neighbors in the gene functional network). The genes 
were clustered into four categories, and the genes in 
each category were annotated into the KEGG path-
ways. (B) The left half plots the drug chemical 
structure and drug target gene set enrichment anal-
ysis of Carfilzomib. The right half plots the heatmap 
of Carfilzomib-related genes (its targets and neigh-
bors in the gene functional network). The genes were 
clustered into four categories, and the genes in each 
category were annotated into the KEGG pathways. 
(C) The left half plots the drug chemical structure and 
drug target gene set enrichment analysis of Aripi-
prazole. The right half plots the heatmap of 
Aripiprazole-related genes (its targets and neighbors 
in the gene functional network). The genes were 
clustered into four categories, and the genes in each 
category were annotated into the KEGG pathways.   
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curve. Consistent with our previous analyses, we used drugs approved 
for breast cancer by the FDA or in Phase II clinical trials as the criterion. 
Our analysis of the ROC curves and AUC values (Fig. 7B) confirmed the 
validity of DTSEA for breast cancer. These findings support DTSEA for 
drug repurposing in other diseases. 

4. Discussion 

This study proposed the DTSEA method as an effective approach to 
repurpose existing drugs for screening potential indications. We intro-
duced a novel metric for drug-disease distance and expanded the usage 
of the GSEA method. As it stands, the DTSEA can provide unique insight 
into finding candidate drugs for human diseases. 

Recent evidence suggested that Cilgavimab and Bamlanivimab could 
be potential monoclonal antibody treatments for the two latest COVID- 
19 variants [57]. However, DTSEA cannot validate the two drugs as our 

combined drug target database contains only one target for each of 
them. A large drug target set is ideal for enrichment analysis rather than 
a small one, which is the limitation of the DTSEA method. Therefore, it 
would be ideal for the DTSEA to give unbiased results for drugs with a 
more comprehensive set of targets. On the one hand, the biased result is 
unavoidable for the DTSEA unless large drug target sets become more 
widely available. On the other hand, precise medicine does not entail 
obtaining an abundance of targets according to its propaganda [58]. 

The reliability of the latest evidence of some drugs is still uncertain. 
As an example of Remdesivir, the clinical trial conducted by Peking 
Union Medical College was statistically nonsignificant [59], whereas the 
NIH finding was significant [60]. Determining which drug is genuinely 
effective is challenging since the algorithm does not predict drug 
response in vivo or in vitro. As a compromise, we decided to keep all 
significant results regardless of the nonsignificant ones. 

In addition, the experimental determination of drug-protein 

Fig. 4. Validations of DTSEA. Comparisons of the 
(A) averaged distance and (B) network separation 
between the targets of predicted drugs and disease 
genes. The Welch’s ANOVA and the trend analysis 
were applied to compare marginal mean difference 
among groups of drugs. The predicted drugs were 
categorized into six drug groups named in alphabet-
ical order and corresponded to: the top 50 drugs 
(Group A), the top 51 to 200 drugs (Group B), the top 
201 to 400 drugs (Group C), the positive ES drugs 
with a not good p-value (p > 0.15 and p < 0.40; 
Group D), the positive ES drugs with a nearly random 
p-value (p > 0.50; Group E), and the negative ES 
drugs (Group F), respectively. (C) Randomly deleted 
edges and nodes revealed the robustness of the 
DTSEA. In the combined box plot, the left part shows 
the intersection percentage of multiple scenarios of 
edge deletion, while the right part shows the per-
centage of random deletions. In each subplot, we 
performed two intersections with the top 50 and 100 
sets. To illustrate the relationships clearly, we 
manually shifted several pixels in each group of dots.   

Fig. 5. Reproducibility of DTSEA in five datasets 
(pipelines). (A) Histogram shows the summary of the 
overlapped drugs predicted by at least three COVID- 
19 related datasets. (B) Pie chart shows the percent-
ages of current status of the overlapped drugs. (C) 
Venn diagram shows the count of overlapping drugs 
across five COVID-19 related datasets. (D) Diagonal 
matrix shows the Spearman correlation coefficient 
(rho) between the drug lists predicted by each pair of 
datasets. (E) ROC curves show the predicted power of 
DTSEA across five datasets.   
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interactions is time-consuming, expensive, and limited to small-scale 
research [61–63], which plays a crucial and predetermined role in 
drug discovery [64]. As the downstream process of drug discovery, we 
should make the best use of all available data to improve predictions, 
given the scarcity of the data, rather than deleting over half of the in-
formation in the batch prediction process (Fig. 6A). Because of the de-
letions, the method is incomparable to other methods. 

Currently, only a few drugs have been approved for COVID-19, and 
exploring the relationship between target genes and disease-related 
genes in the human interactome [65]. Despite this, few computational 
approaches and clinical trials were conducted during the pandemic [66], 
and these barriers will need to be removed in the future. 
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Fig. 6. Extended analysis for single target drugs. (A) The distribution of 
drug target of the preamble drug set. (B) Validation of several potent drugs. For 
each drug, the NES and p-value were shown next to the bar plot. 

Fig. 7. Extended analysis for breast cancer. (A) Diagonal matrix shows the Spearman correlation coefficient (rho) between the drug lists predicted by each pair of 
datasets. (B) ROC curves show the predicted power of DTSEA across six breast cancer datasets. 
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