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1. Introduction

The introduction of immunotherapy has revolutionized the land-
scape of cancer treatment, providing new hope for patients with
advanced-stage cancers.[1] Immune checkpoint inhibitors are a
type of immunotherapy, which have demonstrated remarkable
efficacy in a subset of patients by harnessing the body’s immune
system to target and eliminate cancer cells.[2] However, despite
these successes, the mechanisms underlying the lack of response
or resistance to immunotherapies in some patients are complex
and not fully understood.[3,4] This disparity highlights the
pressing need for predictive models that can accurately identify

patients most likely to benefit from
immunotherapy by integrating various
biological features, thereby optimizing
treatment strategies and improving patient
outcomes.[5]

The promise of immunotherapy lies in
its ability to engage the immune system
in the fight against cancer.[6] However,
the complexity of immune interactions
within the tumor microenvironment
(TME) presents a significant challenge in
predicting therapeutic outcomes.[7] Recent
advancements in bioinformatics and sys-
tems biology have enabled the development
of sophisticated models that integrate
diverse biological data to decode the innate
relationships between gene expression,
immune pathways, and clinical responses.
For instance, T helper 1 (Th1) and T
helper 2 (Th2) cells play crucial roles in
the immune responses against cancer
development, with Th1 cells promoting
cell-mediated immunity and Th2 cells stim-

ulating the production of proinflammatory cytokines.[8,9]

Enhanced T cell infiltration has been associated with improved
responses to immunotherapy,[10] emphasizing the importance
of infiltration of immune system in determining treatment
efficacy.

In addition to T cell infiltration, several studies have identified
genetic mutations that influence the effectiveness of immuno-
therapies across various cancers.[11,12] Somatic gene mutations
can lead to resistance to T-cell-based immunotherapies by
impairing the effector function of CD8þ T cells, such as
APLNR gene mutations.[13] High tumor mutation burden
(TMB) has been associated with better overall survival (OS),
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progression-free survival (PFS), and overall response rate (ORR)
in diverse cancer patients receiving immunotherapy.[11,14–16]

Specifically, in non-small cell lung cancer (NSCLC), higher non-
synonymous mutation burden correlates with improved
response to PD-1 blockade therapy.[12] Mutations in genes such
as TP53, KRAS, and BRAF are known to influence resistance or
sensitivity to immune checkpoint inhibitors.[17,18] However, cer-
tain comutations, such as those involving KEAP1, PBRM1,
SMARCA4, and STK11, can result in poor immunotherapy
outcomes despite high TMB.[19] Therefore, profiling the genetic
landscape of tumors is critical for predicting and optimizing
immunotherapy responses.

Several computational models have been developed to predict
prognosis and response to immunotherapy. The Tumor
Immune Dysfunction and Exclusion (TIDE) model utilizes gene
expression data to elucidate mechanisms of tumor immune
evasion, offering insights into why certain tumors fail to respond
to immune checkpoint blockade due to T cell dysfunction and
exclusion.[20] Similarly, the immuno-oncology algorithm (IO
score) predicts patient response to immunotherapies in
NSCLC using gene expression data, providing independent
and incremental predictive value over current biomarkers.[21]

Another approach is the Modulator of TMB-Associated
Immune Infiltration (MOTIF) model, which predicts immuno-
therapy response by analyzing transcriptome sequencing data,
focusing on factors that regulate CD8þ T cell infiltration and
function.[22] However, these models are limited by their reliance
on a single type of data, such as gene expression, without inte-
grating the multifaceted aspects of the TME and genetic
alterations.

To address these limitations of existing models, we propose
Intelligent Predicting Response to cancer Immunotherapy
through Systematic Modeling (iPRISM), a novel network-based
prognosis prediction model that integrates multiple types of
biological data to predict patient responses to immunotherapy.
By incorporating gene expression data, biological functional
network, TME characteristics, and immune-related pathways,
the iPRISM model provides a comprehensive view of the factors
influencing immunotherapy efficacy. The model utilizes
advanced statistical methods, including stepwise logistic regres-
sion, to capture predictive features for therapeutic reaction.
We have also validated the iPRISMmodel across multiple cancer
types, including melanoma, bladder cancer (BLCA), NSCLC, and
stomach adenocarcinoma (STAD), and evaluated its predictive
accuracy and prognostic utility using independent testing
cohorts. The performance of the iPRISM model has been com-
pared with other establishedmethods to demonstrate its superior
predictive capabilities.

Furthermore, we explore the TME differences and mutation
profiles between predicted responders and nonresponders to
gain deeper insights into the biological mechanisms driving
treatment outcomes. By integrating comprehensive biological
data and advanced predictive modeling, the iPRISM model
has the potential to significantly improve patient stratification
for immunotherapy. This approach can enhance clinical
outcomes by identifying patients most likely to benefit from
immunotherapy while minimizing unnecessary side effects
for nonresponders. Therefore, the iPRISM model will bridge

the gap between the complexity of the TME and the clinical appli-
cation of immunotherapy.

2. Experimental Section

2.1. Data Acquisition

To develop and validate the iPRISM model, we utilized a
comprehensive datasets, Liu cohort,[23] which includes transcrip-
tomic and clinical data from patients treated with immunother-
apy. This cohort served as the primary data source for model
development and training. For independent validation, we
accessed two testing sets, PRJEB23709 and phs000452 which
from the Tumor Immunotherapy Gene Expression Resource
(TIGER) portal (link: http://tiger.canceromics.org/#/download).
These testing sets provided transcriptomic data and clinical
annotations for 91 and 153 clinical samples of patients receiving
immunotherapy.[24,25]

Furthermore, we applied the iPRISM model to several addi-
tional datasets to evaluate its performance in specific cancer
types. For BLCA, we used the IMvigor210 dataset that can be
accessible through the IMvigor210CoreBiologies R package.[26]

This dataset includes transcriptomic data and clinical informa-
tion from patients with advanced urothelial carcinoma treated
with the immune checkpoint inhibitor atezolizumab. In the case
of NSCLC, we utilized GSE93157 dataset to explore the molecu-
lar mechanisms underlying treatment responses.[27] Similarly,
for STAD, we employed the PRJEB25780 dataset from the
TIGER portal for validation purposes,[28] which contains gene
expression data but lacked clinical annotations. The dataset
summary can be found in the Table S1, Supporting Information.
The pathways used in the study were downloaded from
Reactome database (Version 87, https://reactome.org/), which
include 2,656 pathways.

2.2. Study Design of iPRISM

The iPRISMmodel employs a three-stage workflow, as illustrated
in Figure 1: (1) identification of immune-related pathways, (2)
identification of response-related pathways, and (3) application
of the prediction model of immunotherapy response.

In the first stage, we identified immune-related pathways.
Specifically, we collected three categories of immune-related
genes: three immune checkpoint inhibitor (ICI) genes, 23
human leukocyte antigen (HLA) genes, and 141 TME genes
(Table S2, Supporting Information). To ensure that our analysis
captures the most immune-related pathways, we mapped three
categories of gene sets onto a protein–protein interaction (PPI)
network obtained from STRING (https://www.string-db.org/),
respectively. Next, we applied the random walk with restart
(RWR) algorithm to prioritize genes within the network. Using
these ranked genes, we conducted Gene Set Enrichment
Analysis (GSEA) to identify statistically significant immune-
related pathways. The intersecting pathways with p< 0.001
across the three gene categories were selected for further analy-
sis. This step obtained 31 significant pathways.

In the second stage, the identified immune-related pathways
are coupled with patient-specific gene expression data to quantify
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pathway activities. Gene expression data are a key input for esti-
mating the activities of these immune-related pathways in indi-
vidual patients. To achieve this, we use single-sample Gene Set
Enrichment Analysis (ssGSEA) to estimate pathway activities for
each patient, which allows us to quantify the activity of each path-
way based on the gene expression levels. We then performed the
student’s t test to compare pathway activities between responders

and nonresponders. Pathways showing significant differences
(p< 0.05) were considered response-related.

In final training stage, the selected response-related pathways
were used to train the prediction model to predict immunother-
apy response. We employed stepwise logistic regression to iden-
tify the most statistically significant pathways that differ from
nonresponders and responders. This iterative method selects
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Figure 1. iPRISM workflow for predicting immunotherapy response. A) Schematic overview of the (iPRISMmodel. B) Detailed steps of the iPRISMmodel
integrating critical biological networks. A) Identification of immune-related pathways. Integration of ICI, TME, and HLA genes into a PPI network.
Application of RWR algorithm to prioritize immunotherapy response-relevant genes. GSEA to identify enriched pathways and select crucial immune
response intersection pathways. B) Identification of response-related pathways. Quantification of pathway activities in individual patients using sin-
gle-sample GSEA (ssGSEA). Pairwise logistic regression to identify pathways with significant activity differences between responders (R) and nonres-
ponders (NR) (p-values <0.05). C) Application of prediction model. Estimation of patient responses based on pathway activities using pairwise logistic
regression. Validation against clinical outcomes, demonstrated by Kaplan–Meier survival curves showing significant differences between responders and
nonresponders. This workflow illustrates the methodological steps in constructing and validating the iPRISM model, emphasizing its integration of
immune-related pathways, identification of response-related pathways, and application of a prognostic model for predicting immunotherapy outcomes.
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significant predictors while excluding nonsignificant ones,
ensuring that only the most statistically significant pathways that
contribute to treatment response are included in the final model.
Finally, we constructed the iPRISM model and extracted the
most relevant pathways contributing to immunotherapy
response.

2.3. Feature Extraction Using Stepwise Logistic Regression

To refine the set of pathways that contribute to the prediction of
immunotherapy response, we employed stepwise logistic regres-
sion, a widely used feature selection technique in predictive
modeling. This approach aims to identify and subset most rele-
vant pathways while excluding those that do not significantly con-
tribute to the prediction.

The process of stepwise logistic regression combines two tech-
niques: forward selection and backward elimination. Forward
selection initiates with no pathways and sequentially adds predic-
tors based on their contribution to improving the model perfor-
mance until no additional variables significantly enhance the
model. Conversely, backward elimination begins with all path-
ways and iteratively removes the least significant ones until only
statistically significant pathways remain.

This stepwise approach iteratively adds and removes pathways
to identify the optimal set of pathways. At each step, the model
evaluates whether including or removing a pathway improves its
predictive performance, remaining those pathways with the
highest predictive power. This process ensures the model remain
the most important pathways while avoiding overfitting.

In iPRISM, we employ stepwise logistic regression to the path-
way activity score profiles derived from gene expression data.
Initially, the activity profiles of 31 immune-related pathways were
included as input features. The stepwise logistic regression then
iteratively refined the model by selecting pathways that showed
the strongest association with treatment response while
excluding those with minimal or no predictive values. By imple-
menting this, we trained iPRISM and constructed its model as
iPRISM score:

iPRISM ¼
Xk

i¼1

cipi (1)

where ci is the coefficient of pathway pi, and k is the number of
pathways constructed in the iPRISM model. The critical path-
ways influencing treatment outcomes are presented in Table S1,
Supporting Information.

To validate the iPRISM model, we employed independent
datasets and evaluated its performance by comparing predicted
drug responses with actual clinical outcomes. We assessed the
model’s predictive accuracy using receiver operating characteris-
tic (ROC) curves and area under the curve (AUC) values.
Furthermore, we generated Kaplan–Meier survival curves to
compare OS and PFS between predicted responders and nonres-
ponders. This comprehensive validation approach enabled us to
rigorously assess the model’s ability to stratify patients and
predict immunotherapy outcomes across various cancer types.

2.4. Immune Cell Infiltration Analysis

We employed xCell to quantify the extent of Th1 and Th2 cell
infiltration in tumor samples. xCell is a gene signature-based
method that estimates the abundance of various immune cell
types from gene expression data.[29] This approach provided a
robust assessment of the tumor immune microenvironment.
We then performed comparative analyses of Th1 and Th2 cell
infiltration levels between responders and nonresponders to
investigate their roles in mediating immune responses to immu-
notherapy, which can gain valuable insight into the interplay
between tumor biology and the immune system in the context
of immunotherapy.

2.5. Mutation Profiling and Co-Occurrence Analysis

We performed mutation profiling to identify genetic alterations
in responders and nonresponders. Using maftools package, we
generated waterfall plots to visualize the distribution and fre-
quency of mutations across the cohorts.[30] Additionally, to iden-
tify significant patterns of genetic interactions, we conducted an
analysis of mutually exclusive and co-occurring mutations using
Fisher’s exact test. We focused on the top 10 genes exhibiting
mutually exclusive or co-occurring mutations in responders
and nonresponders. The significance of these interactions was
visualized using color-coded p-values. Mutually exclusive muta-
tions identified in this analysis may indicate alternative pathways
driving tumorigenesis, suggesting distinct mechanisms of can-
cer development and progression in different patient subgroups.
Conversely, co-occurring mutations potentially signify synergis-
tic effects contributing to cancer progression, offering insights
into the cooperative genetic alterations that may influence treat-
ment outcomes.

2.6. Statistical Analysis

Statistical analyses were conducted using R. The chi-square test
was used to examine the association between model predictions
and actual drug responses. ROC curves and AUC values were cal-
culated using the “pROC” package in R. Survival analysis was per-
formed using the “survival” package, and Kaplan–Meier curves
and log-rank test were performed using the “survminer” package.

3. Results

3.1. Analysis of Featured Pathways in iPRISM Model

In this section, we presented the featured pathways within the
iPRISMmodel and their correlations within various immune cell
types, demonstrating the alignment of learned features with
prior knowledge. In this case, we trained iPRISM and con-
structed its model as iPRISM scores. After diving into the
iPRISM model, we found several key pathways were correlated
with immune cell types.

Figure 2 illustrates the correlations between the activities of
key immune-related pathways and different immune cell types.
Figure S1, Supporting Information provides a detailed analysis of
the top three pathways exhibiting the highest degree of cellular
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correlation with immune cells. Notably, pathways such as
VEGFR2-mediated cell proliferation, MAPK3 activation, and
senescence-associated secretory phenotype (SASP) show signifi-
cant positive correlations with immune cells like macrophages
(R= 0.27, p= 0.0026) and M1 macrophages (R= 0.31,
p= 4.6e-04). These correlations suggest an enhancement of
immune cell functions within the disease context.

In particular, the MAPK3 activation pathway demonstrated
strong correlations with macrophages (R= 0.45, p= 3.1e-07)
and M1 macrophages (R= 0.32, p= 3.6e-04), indicating its
potential impact on immunotherapy outcomes (Figure S1,
Supporting Information). Similarly, VEGFR2-mediated cell pro-
liferation is associated with tumor angiogenesis. For patients
with high activity in this pathway, antiangiogenic drugs such
as Bevacizumab can be prescribed in combination with immu-
notherapy to reduce the formation of new blood vessels, limiting
tumor growth, and improving immune infiltration into the
tumor site. These findings align with previous studies that have
highlighted the importance of VEGFR2 in angiogenesis and
immune modulation,[31,32] and MAPK3 in cell proliferation
and survival pathways.[33]

Conversely, the top three pathways showed negative correla-
tions with specific immune cells, particularly hematopoietic stem
cells (HSCs). For example, SASP showed a negative correlation
with HSCs (R=�0.46, p= 1.1e-07, Figure S1, Supporting
Information), indicating that high activity in this pathway might
suppress HSC presence. This observation aligns with existing
studies on the balance between stem cell quiescence and activa-
tion, emphasizing the importance of maintaining HSC quies-
cence for preserving regenerative capacity and preventing
exhaustion and DNA damage.[34,35] Additionally, SASP has been
shown to disrupt IL-1, which is crucial for HSC quiescence and
maintenance.[36,37]

To further explore the relationships between iPRISM scores
and immune cell infiltration, we examined the correlations
between the iPRISM scores and various immune cell types, as
shown in Figure S2, Supporting Information. Notably, we
observed significant negative correlations with activated den-
dritic cells (aDCs), CD4þ memory T cells, CD4þ naive T cells,
and CD8þ T cells. This result suggests that higher iPRISM score
may be associated with decreased immune cell populations.
Additionally, we observed the same patterns with macrophages
M1 and HSCs, which may suggest that the iPRISM model effec-
tively captured these interactions between immune-related path-
ways and various immune cell types.

Moreover, we illustrated key pathways identified by iPRISM
model. The final selected pathways are provided in Table S3,
Supporting Information, along with a brief description of
their known roles in immunotherapy and tumor-immune rela-
tionships in Supplementary Note 1, Supporting Information.
It highlights the biological relevance of the pathways, which play
critical roles in the immune response and tumor-immune
interactions.

3.2. Prognostic Performance of iPRISM

We trained the iPRISM model using Liu cohort and subse-
quently evaluated its alignment with the actual immunotherapy
response outcomes. Our analysis demonstrated that the iPRISM
model effectively distinguished between responders (R) and non-
responders (NR) in the training set, confirming its capability to
accurately identify patiented likely to benefit from immunother-
apy. Figure 3A presents the results of a chi-square test comparing
predicted responders and nonresponders to the actual drug
response outcomes. The test yielded a highly significant result

Figure 2. Correlation analysis of pathways and immune cells. The bubble plot in the left panel shows correlations between key immune-related pathways
and immune cell types. Color intensity represents the Pearson correlation coefficient strength, while bubble size indicates statistical significance. The right
panel displays the differential fold change of pathways between responders and nonresponders, highlighting pathways that significantly differentiate the
two groups.
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(p= 1.67e-09), indicating a strong association between the mod-
el’s predictions and observed immunotherapy responses.

To illustrate the ability of the iPRISM model to distinguish
between responders and nonresponders, we plotted the distribu-
tion of iPRISM scores for each group (Figure S3, Supporting
Information). As shown, the iPRISM scores are significantly
higher in responders compared to nonresponders (p< 0.001),
demonstrating the model’s discriminatory power.

To illustrate the performance over time, we presented the
ROC curves for predictions at one-, two-, and three-years survival
intervals. The AUC values at these time points were 0.706, 0.780,
and 0.881, respectively. This indicates high predictive accuracy
over time, with an improving trend suggesting enhanced perfor-
mance in forecasting long-term outcomes.

We further examined survival outcomes based on the classifi-
cation results of the iPRISM model.Figure 3C displays the OS of
patients predicted to be responders versus nonresponders. The
Kaplan–Meier survival curves revealed a significant difference in
survival outcomes between the two groups (p< 0.0001), with res-
ponders exhibiting substantially better survival rates. This find-
ing indicates that patients predicted to respond to treatment by
the iPRISM model have a significantly improved OS. Similarly,
Figure 3D illustrates the PFS for the same patient cohort.

The Kaplan–Meier curves demonstrated a significant difference
in PFS between responders and nonresponders (p= 0.0002).
This result reinforces the model’s ability to predict not only
immediate drug response but also long-term clinical benefits.

3.3. Validation of the iPRISM Model on Independent Testing
Sets

Having demonstrated sound validation results in predicting drug
responses and survival outcomes using iPRISM in the Liu
cohort, we further validated its performance using two separate
melanoma testing sets. These independent immunotherapy data-
sets were used to assess the model’s generalizability and robust-
ness across different populations.

We first presented the ROC curves using two testing sets
(Figure 4A). The ROC-AUC for both test cohorts exceeded
0.70, demonstrating strong predictive accuracy across diverse
cohorts. To further evaluate the association between the model’s
predictions and actual immunotherapy responses, we performed
chi-square tests as shown in Figure 4B. For both test cohorts,
iPRISM achieved a significant correlation between predictions
and actual responses, supporting the model’s predictive validity.
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Figure 3. Prognostic performance of the iPRISM model in the training set. A) Chi-square test results showing the association between the model pre-
dictions and actual drug responses in the Liu cohort. Bar chart depicts the percentage of predicted responders and nonresponders. B) ROC curves
illustrating the prediction accuracy of the iPRISM model at 1, 2, and 3 years. The AUC values indicate high predictive accuracy over time.
C) Kaplan–Meier survival curves showing OS of patients predicted responders and nonresponders in the Liu cohort (p< 0.0001). D) Kaplan–Meier
survival curves illustrating the PFS for the same patient groups, indicating a significant difference in PFS between responders and nonresponders
(p= 0.0002).

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 2400717 2400717 (6 of 13) © 2024 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advintellsyst.com


These results display the model’s effectiveness in different
cohorts, consistent with its performance in the training set.

We further conducted survival analysis to examine the prog-
nostic significance of the iPRISM model in the independent
testing sets. Figure 4C,D illustrate the OS outcomes based on
the iPRISM-model’s classification results. In test cohort 1
(Figure 4C), the Kaplan–Meier survival curves revealed a signifi-
cant difference in OS between predicted responders and nonres-
ponders (p< 0.016), with responders showing markedly better
survival rates. Similarly, test cohort 2 in Figure 4D yielded a sim-
ilar result, demonstrating a significant OS difference between
predicted responders and nonresponders (p= 0.020). These con-
sistent findings across both cohorts validate the model’s utility in
prognosticating patient outcomes and its potential for guiding
personalized immunotherapy strategies.

3.4. Comparative Analysis of the iPRISM Model with Other
Models

After demonstrating iPRISM captured relevant features of the prog-
nosis and immunotherapy responses in melanoma using the Liu
cohort and two independent testing sets, we further validated its
performance by comparing it with 11 other established methods.

We first evaluated the predictive performance of iPRISM com-
pared to other methods using Liu cohort. Figure 5A presents the
ROC curves for all methods, with iPRISM demonstrating supe-
rior predictive performance as evidenced by its higher ROC-
AUC. To ensure robustness, we extended this comparison to
two independent testing sets. Figure 5B shows the ROC-AUC
values across the Liu cohort and both testing sets. Notably,
iPRISM consistently achieved the highest AUC values in all data-
sets, indicating its reliability and effectiveness across diverse
patient populations.

Beyond predictive accuracy, we evaluated the prognostic
significance of iPRISM through univariate and multivariate
Cox analysis. The univariate analysis (Figure 5C) compared
the hazard ratios of various markers, including those from the
TIDE framework,[20] to assess their individual prognostic value.
iPRISM yielded the significantly highest hazard ratio, indicating
its superior ability to provide critical prognostic features regard-
ing patient survival.

To examine the independence and robustness of the predictive
markers used in iPRISM, we conducted a multivariate Cox anal-
ysis (Figure 5D). This analysis aimed to determine whether the
markers and features retain their predictive power when consid-
ered collectively. iPRISM outperformed all other methods,
exhibiting the greatest hazard ratio and the highest statistical

A B

C D

Figure 4. Validation of iPRISM on independent testing sets. A) ROC curves for the iPRISM model predictions in test cohort 1 (PRJEB23709) and test
cohort 2 (phs000452). The AUC values demonstrate strong predictive accuracy across both datasets. B) Chi-square test results showing significant
correlations between model predictions and actual drug responses in both testing cohorts. C) Kaplan–Meier survival curves for OS in test cohort
1, showing a significant difference between predicted responders and nonresponders (p< 0.016). D) Kaplan–Meier survival curves for OS in test cohort
2, indicating a significant difference between predicted responders and nonresponders (p= 0.020).
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significance. This demonstrates that the predictive markers in
iPRISM are robust and independent, further validating its prog-
nostic utility in melanoma.

3.5. Application of the iPRISM Model to Other Cancer Types

To assess the generalizability and effectiveness of the iPRISM
model beyond melanoma, we extended our validation to other
cancer types, including BLCA, NSCLC, and STAD which are suit-
able for immunotherapy. This section of evaluation aimed to
demonstrate its versatility across different cancer contexts.

In BLCA, we compared iPRISM with other methods to evalu-
ate its predictive accuracy and prognostic significance. Figure 6A,
B present the ROC curves, showing that iPRISM outperforms
other methods with a higher ROC-AUC in IMvigor210 dataset
(Figure 6A,B). Its classification ability was further validated using
the chi-square test (Figure 6C), yielding a high significant
p-value, which indicates a strong association between its

prediction and actual immunotherapy responses. The survival
analysis in Figure 6D demonstrates a significant difference in
Kaplan–Meier curves between predicted responders and nonres-
ponders (p< 0.0001), indicating the significant prognostic pre-
diction power.

For NSCLC, iPRISM demonstrated superior performance
compared to other methods, the ROC curves showed that
iPRISM achieves the highest predictive accuracy across all meth-
ods evaluated in GSE93157 dataset (Figure 6E,F).[27] We assess
its classification accuracy using a Chi-square test (Figure 6G).
This test yielded a significant p-value (p= 0.015), confirming
its effectiveness in classifying drug responses. The survival anal-
ysis in Figure 6H shows a significant difference in OS between
predicted responders and nonresponders (p= 0.035), reinforc-
ing the model’s prognostic utility in NSCLC.

In STAD, we focused on the model’s classification and predic-
tion accuracy due to the absence of survival information in
the dataset. We demonstrated the ROC curves in Figure S4A,

A

C D

B

Figure 5. Comparative analysis of iPRISM with other methods. A) ROC curves comparing the iPRISMmodel with 11 other methods using the Liu cohort,
demonstrating superior performance of iPRISM. B) Comparative ROC-AUC values for iPRISM and other methods across the Liu cohort and two inde-
pendent testing sets, highlighting the robust performance of iPRISM. C) Univariate Cox analysis of various markers with 95% confidence interval, includ-
ing those in TIDE framework, showing hazard ratios and indicating the iPRISMmodel’s superior prognostic power. D) Multivariate Cox analysis assessing
the independence of predictive markers with 95% confidence interval, with iPRISM model showing the lowest hazard ratio and highest statistical
significance.
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Supporting Information, and it shows the competitive perfor-
mance against other methods in PRJEB25780 dataset.[28]

Comparison of AUC values in Figure S4B, Supporting
Information showed that iPRISM achieved one of the highest
AUCs. The classification accuracy is significant (Figure S4C,
Supporting Information), indicating a strong correlation between
predictions and actual drug responses. These results underscore
the iPRISM model’s effectiveness in predicting treatment out-
comes in STAD.

Overall, these evaluations across multiple cancer types dem-
onstrate the versatility and robustness of iPRISM in predicting
immunotherapy responses and patient outcomes beyond its
original application in melanoma.

3.6. iPRISM Can Capture the Biological Mechanisms
Underlying Immunotherapy Responses

Building upon our previous finding demonstrating the predictive
and prognostic capabilities across multiple cancer types, we fur-
ther applied this model to gain insights into the biological mech-
anisms involved in immunotherapy responses. Using Liu cohort,
we applied iPRISM to gain insights into the TME differences
between predicted responders and nonresponders.

According to Figure 7A, results in GSEA highlighted several
pathways enriched in predicted responders and nonresponders.
Among the top pathways identified, the Th1 and Th2 cell
differentiation pathway emerged as a key factor. This finding
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Figure 6. Validation of iPRISM in BLCA and NSCLC. A) ROC curves comparing iPRISM model with other methods in BLCA cohort, demonstrating its
superior performance. B) Comparative ROC-AUC values in BLCA cohort, highlighting iPRISMmodel’s high predictive accuracy. C) Chi-square test results
showing significant association between the model predictions and actual drug responses in the BLCA cohort (p= 2.94e-27). D) Kaplan–Meier survival
curves for OS in the BLCA cohort, showing a significant difference between predicted responders and nonresponders (p< 0.0001). E) ROC curves
comparing iPRISM model with other methods in NSCLC cohort, demonstrating superior performance by the iPRISM model. F) Comparative ROC-
AUC values in the NSCLC cohort, highlighting the model’s high predictive accuracy. G) Chi-square test results showing significant association between
the model predictions and actual drug responses in the NSCLC cohort (p= 0.015). H) Kaplan–Meier survival curves for OS in the NSCLC cohort, showing
a significant difference between predicted responders and nonresponders (p= 0.035).
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underscores the crucial role of these T helper cells in modulating
immune responses against melanoma, potentially influencing
the efficacy of immunotherapy. This pathway aligns with recent
studies showing that Th1 cells play a pivotal role in antitumor
immunity by activating cytotoxic T cells and natural killer cells
through interferon gamma (IFN-γ) secretion, while Th2 cells
can promote an immunosuppressive environment that may
aid tumor growth through interleukin 4 (IL-4) production.[38]

Quantitative analysis of Th1 and Th2 cell infiltration levels using
xCell revealed significantly higher infiltration levels in respond-
ers (p< 0.01), as shown in Figure 7B, indicating a more robust

antitumor immune response in responders. The association
between higher Th1 and Th2 cell infiltration and positive
responses to immunotherapy has been corroborated by findings
that a balanced Th1/Th2 response is crucial for effective antitu-
mor immunity, and a skew toward Th2 can facilitate tumor
immune evasion.[39]

To understand the genetic landscape influencing these
immune responses, we analyzed the model behind iPRISM to
analyze mutation profiles in predicted responders and nonres-
ponders. In predicted responders, we identified significant pat-
terns of co-occurrence and mutually exclusivity among the top 10
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Figure 7. Further analysis of tumor immunotherapy mechanisms. A) GSEA enrichment results of core genes in the Liu cohort, arranged by pathway
t-scores. Response-associated pathways are positioned to the right, with Th1 and Th2 cell differentiation pathway among the top pathways.
B) Comparison of Th1 and Th2 cell infiltration levels between predicted responders and nonresponders using the xCell tool, showing significantly higher
infiltration in responders. C) Analysis of top 10 genes with mutually exclusive or co-occurring mutations in responders. Color indicates p-values of
mutually exclusive co-occurring; dots and asterisks represent correlation p-values. D) Waterfall plot depicting mutation distribution and frequency
in patients predicted to be responders.
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mutated genes (Figure 7C). Notably, genes such as TTN,
MUC16, and DNAH5 showed exclusively relationships, suggest-
ing potential synergistic interactions that may enhance antitu-
mor immune responses. The waterfall plots (Figure 7D) reveal
that 92.86% (39 out of 42) of predicted responders frequently
harbored mutations in these key genes, providing a genetic
signature that correlates with positive immunotherapy
outcomes.

Conversely, predicted nonresponders exhibited distinct
mutation profiles (Figure S5A, Supporting Information). In this
group, 91.14% (72 out of 79) of samples frequently carried
mutations in genes including MUC16, BRAF, and CSMD1.
The co-occurrence and mutual exclusivity patterns in nonres-
ponders (Figure S5B, Supporting Information) differed from
those in responders, potentially contributing to mechanisms
of immunotherapy resistance. For instance, BRAF mutations
lead to the activation of the MAPK pathway, which is essential
for immune evasion by human melanoma cells.[40] Similarly,
the presence of mutations in CSMD1, a gene implicated in
tumor suppression, suggests a loss of function that may further
facilitate immune evasion and tumor progression.[41]

4. Discussion

Our study demonstrates the efficacy of the iPRISMmodel in pre-
dicting responses to immunotherapy across diverse cancer types.
By integrating multiple types of biological data, including gene
expression profiles and immune-related pathways, our approach
offers a comprehensive framework for patient stratification and
treatment planning, and replicates previous findings using the
view of bioinformatics.

A primary strength of iPRISM lies in its comprehensive
integration of existing biological data. By incorporating gene
expression profiles, biological network, TME characteristics,
immune-related pathways, and patient clinical outcomes, the
iPRISM model provides a holistic view of factors influencing
immunotherapy responses. The use of advanced feature selec-
tion techniques, such as GSEA and ssGSEA, ensures the inclu-
sion of only the most relevant pathways and genes.[42] This is
evidenced by the high AUC values and significant survival
benefits observed in both training and independent testing
cohorts. Furthermore, the stepwise logistic regression employed
efficiently identifies the most relevant predictors from a large set
of potential variables.[43]

Our analysis reveals a spectrum of mutations in nonrespond-
ers highlights key mechanisms of immunotherapy resistance.
These mechanisms include immune evasion strategies and alter-
ations in critical signaling pathways. Notably, mutations in the
Wnt/β-catenin pathway have been associated with immune
exclusion by creating a “cold” tumor microenvironment that is
less infiltrated by immune cells.[44] This pathway prevents the
effective activation and recruitment of cytotoxic T cells, thereby
diminishing immunotherapy efficacy.

Immune evasion presents an extensive challenge in cancer
immunotherapy. Tumors can evade immune detection through
various strategies, including the production of immunosuppres-
sive factors like transforming growth factor beta (TGF-β)
and the recruitment of immunosuppressive cells such as

tumor-associated macrophages and myeloid-derived suppressor
cells.[45–47] Additionally, tumors may lose neoantigens or
develop impairments in antigen processing and presentation
machinery,[48,49] such as mutations in β-2-microglobulin and
HLA molecules.[48] These factors and alterations in signaling
pathways such as PTEN loss, along with upregulation of immu-
nosuppressive cytokines such as TGF-β, collectively contribute to
the resistance observed in nonresponders by creating an environ-
ment that excludes cytotoxic T cells and supports tumor
growth.[50]

The iPRISM model builds upon and enhances previous stud-
ies in immunotherapy prediction. While it confirms the impor-
tance of immune-related pathways identified in earlier studies, it
also provides novel insights through its comprehensive data inte-
gration. Our findings emphasize the crucial role of comprehen-
sive molecular profiling in understanding and surmounting
immunotherapy resistance. The enrichment of Th1 and Th2 cell
differentiation pathways among responders highlights the criti-
cal role of these immune cells in mediating effective antitumor
responses.[51] Higher infiltration levels of Th1 and Th2 cells in
responders suggest their crucial role in determining immuno-
therapy outcomes.

The ability to accurately predict immunotherapy responses
and provide prognostic insights of iPRISM has significant clini-
cal implications. By identifying key genetic and signaling alter-
ations, we can develop targeted therapies to inhibit specific
resistance mechanisms.[52] For example, combining immune
checkpoint inhibitors with therapies targeting the Wnt/β-catenin
pathway or TGF-β signaling may enhance the efficacy of immu-
notherapy.[53] Moreover, strategies to modulate the tumor micro-
environment, such as nanomedicine-based approaches to reverse
immunosuppression, offer promising insights for improving
treatment outcomes.[54]

While iPRISM demonstrates considerable strengths, it is
essential to acknowledge its potential limitations. One such limi-
tation is the dependence on the quality and completeness of
input data. Although iPRISM is trained and validated from
various cohorts, variations in data acquisition methods and pre-
processing techniques could introduce noise and bias. These var-
iations could affect its performance across different patient
populations and lab environments. To address this, incorporat-
ing more diverse datasets would improve the robustness and
allow for broader application in clinical settings.

Furthermore, the model relies on static gene expression and
mutation data collected at baseline, which may not capture all the
characteristics of the TME and immune response over the course
of the treatment. As patients receiving treatment, changes in the
TME could alter the response to treatment. Incorporating longi-
tudinal data into iPRISM would allow for more accurate
estimates of long-term outcomes, which further provide more
personalized treatment recommendations.

We have wrapped the core functions to an R package.
Researchers can adjust the number of pathways by modifying
significance thresholds to broaden or narrow down the analysis.
To our concerns, retaining fewer, highly significant pathways can
result in a simpler model, which may generalize better and
reduce the risk of overfitting. Conversely, including more
features can increase model complexity, which may improve pre-
diction accuracy. Additionally, researchers can incorporate other
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pathways based on other well-established databases rather than
Reactome, such as Kyoto Encyclopedia of Genes and Genomes
(KEGG) or GO. In this case, researchers can include pathways
beyond the immune-related initially identified in iPRISM, which
can enable researchers to explore specific questions or hypothe-
ses according to their needs.

In conclusion, iPRISM represents a robust and reproducible
tool for predicting immunotherapy responses and providing
prognostic insights across multiple cancer types. Its integration
of diverse biological relevance highlights its potential for
guiding personalized treatment strategies. Future research
should focus on adaptive treatment strategies to dynamically
counteract resistance mechanisms. The use of combination ther-
apies, personalized to the mutational and immunological profile
of each patient, holds great promise in improving the efficacy of
immunotherapy.[55] By addressing the underlying mechanisms
of resistance, our approach paves the way for more effective
and tailored treatment strategies, ultimately improving clinical
outcomes for cancer patients.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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