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DeepCCDS: Interpretable Deep Learning Framework for
Predicting Cancer Cell Drug Sensitivity through
Characterizing Cancer Driver Signals

Jiashuo Wu, Jiyin Lai, Xilong Zhao, Ziyi Wang, Yongbao Zhang, Liqiang Wang,
Yinchun Su, Yalan He, Siyuan Li, Ying Jiang, and Junwei Han*

Accurate characterization of cellular states is the foundation for precise
prediction of drug sensitivity in cancer cell lines, which in turn is fundamental
to realizing precision oncology. However, current deep learning approaches
have limitations in characterizing cellular states. They rely solely on isolated
genetic markers, overlooking the complex regulatory networks and cellular
mechanisms that underlie drug responses. To address this limitation, this
work proposes DeepCCDS, a Deep learning framework for Cancer Cell Drug
Sensitivity prediction through Characterizing Cancer Driver Signals.
DeepCCDS incorporates a prior knowledge network to characterize cancer
driver signals, building upon the self-supervised neural network framework.
The signals can reflect key mechanisms influencing cancer cell development
and drug response, enhancing the model’s predictive performance and
interpretability. DeepCCDS has demonstrated superior performance in
predicting drug sensitivity compared to previous state-of-the-art approaches
across multiple datasets. Benefiting from integrating prior knowledge,
DeepCCDS exhibits powerful feature representation capabilities and
interpretability. Based on these feature representations, we have identified
embedding features that could potentially be used for drug screening in new
indications. Further, this work demonstrates the applicability of DeepCCDS on
solid tumor samples from The Cancer Genome Atlas. This work believes
integrating DeepCCDS into clinical decision-making processes can potentially
improve the selection of personalized treatment strategies for cancer patients.
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1. Introduction

Cancer is a highly heterogeneous disease,
displaying a range of genetic diversity and
phenotypic variability.[1] Annually, numer-
ous novel treatment modalities are sub-
jected to clinical evaluation for their efficacy
against diverse cancer types, yet less than
4% receive approval from the US Food and
Drug Administration.[2] Even with favor-
able outcomes post-therapy, the consider-
able heterogeneity may lead to eventual tu-
mor progression.[3] These challenges high-
light the need for more sophisticated ap-
proaches to predict individual responses to
cancer treatments.
Genomic and transcriptomic characteris-
tics have been proven to correlate signif-
icantly with patients’ responses to cancer
treatments.[4,5] Owing to the limited avail-
ability of large cancer patient cohorts, large-
scale cell line assays and comprehensive
multi-omics databases like GDSC[6] and
CCLE[7] have been instrumental in char-
acterizing biological heterogeneity and en-
hancing our understanding of drug re-
sponse mechanisms. Recently, many com-
putational approaches based on deep learn-
ing and large-scale cell line assays have
been developed to improve drug sensitivity

prediction. Despite achieving promising predictive results, ex-
isting approaches remain controversial in terms of characteriz-
ing cell features. For example, liu et al. introduced the tCNNS,
which predicts the drug sensitivity of cell lines by utilizing ge-
netic variation based on convolutional neural networks.[8] Jiang
et al. developedDeepTTA, a deep learningmodel that integrates a
transformer architecture and a neural network for predicting the
anti-cancer drug sensitivity of cell lines using gene expression
data.[9] Chiu et al. introduce DeepDR for predicting the efficacy
of cancer treatments using a deep learning model, which uses
gene mutation and expression profiles of cancer cell lines.[10]

These approaches use genomic and/or transcriptomic features
of all genes to characterize cells, which may incorporate inher-
ent noise and increase the complexity of the model. Therefore,
trainingmodels usingmore insightful features, such as some im-
portant biomedical entity, appears to be a superior strategy. For
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example, Precily presented by Chawla et al. leverages the path-
ways instead of genes to predict anti-cancer drug sensitivity.[1]

Chang et al. developed CDRscan, which can infer drug sensi-
tivity using only the mutation status of cancer driver genes.[11]

Driver genes play a central role in tumor progression, and their
genetic status may be directly related to the cellular response to
drugs.[12,13] CDRscan successfully improves the model’s predic-
tive ability by using driver genes to characterize cellular states.
However, the approach solely considers the genetic state of driver
genes, overlooking the broader cellular perturbations and their
impact on drug sensitivity. Cancer cell response to drugs is gov-
erned by the interplay of multiple signaling cascades, rather than
the isolated genetic profile of single genes.[14] Therefore, we be-
lieve incorporating the complex perturbation of cancer driver
genes would further enhance the model’s predictive accuracy.
Here, we developed DeepCCDS, a deep learning framework

for cancer cell drug sensitivity prediction through characterizing
cancer driver signals. This provides a more nuanced understand-
ing of drug responsemechanisms, potentially leading tomore ac-
curate predictions of drug sensitivity. Specifically, this framework
consists of four main components: (1) A prior knowledge net-
work is used to characterize signal transduction of driver genes
as biological pathways. The activities of these pathways serve as
an embedded representation of the cell’s gene expression pro-
file; (2) A mutation autoencoder is used to learn embedded rep-
resentations of the mutational states of driver genes; (3) A drug
autoencoder is used to learn embedded representations of drug
molecular structures; (4)A feedforward neural network is used to
integrate these three embedded features and predict the sensitiv-
ity value of cells to drugs. DeepCCDS demonstrates excellent pre-
dictive capability in terms of regression-based and classification-
based metrics in different datasets, specific cells, or specific
drugs, outperforming some well-cited deep learning-based ap-
proaches and traditional machine learning models. Through sys-
tematic model interpretation, we demonstrate that DeepCCDS
can effectively abstract original features and discover new fea-
tures related to drug response. We also applied DeepCCDS to
clinical patient cohorts of The Cancer Genome Atlas (TCGA)
to determine the potential for extrapolating this approach in
precision oncology. Overall, DeepCCDS effectively enhances the
accuracy and interpretability of current drug sensitivity predic-
tion approaches and shows promise in advancing personalized
medicine.

2. Results

2.1. Characterization of Cancer Driver Signals for Drug Sensitivity
Prediction

DeepCCDS is a novel computational framework for predicting
the sensitivity of specified cells to drugs (Figure 1). This frame-
work integrates the prior knowledge network to characterize the
key signals in cancer cell development and proliferation. Consid-
ering these factors can effectively improve the accuracy of predic-
tion for drug sensitivity. Specifically, we characterized the cancer
driver signals as 38 pathways through enrichment analysis (see
Methods section; Figure 2A; Table S1, Supporting Information).
The GSEA results’ leading-edge subset represents key genes driv-
ing the enrichment signal within the gene set.[15] We found a

higher proportion of driver genes in the leading-edge subset of
each pathway (Figure 2A,B). This indicates that these pathways
can effectively reflect the action mechanisms of driver genes.
We observed many well-studied cancer development-related key
pathways, such as the MAPK signaling pathway,[16] PI3K-Akt sig-
naling pathway,[17] and JAK-STAT signaling pathway.[18] More-
over, these pathways have also been proven to be associated with
cancer treatment response and are used as therapeutic targets for
some cancers in clinical settings.[19–21] The single sample gene
set enrichment analysis (ssGSEA) algorithm was then applied to
calculate the activities of the 38 pathways. Using the pathway ac-
tivity instead of high-dimensional gene expression data can sim-
plify the complexity of the model while retaining key biological
information and reflecting the biological mechanisms of driver
genes.

2.2. Comprehensive Evaluation for the DeepCCDS Model

To execute the training process, we obtained a total of 319 543
drug-cancer cell line pairs and their corresponding sensitivity
data from the GDSC database. All samples (cell-drug pairs) were
randomly divided into training (80%), validation (10%), and test
(10%) sets. We determined the structure of the autoencoders and
the training parameters for the complete DeepCCDS through
pre-training (seeMethods section). By comparing various param-
eter combinations, the structure that achieved the lowest BCE for
both drug and mutation autoencoders was identified as having
two hidden layers with 300 and 100 neurons, respectively, and a
bottleneck layer with 30 neurons (Figure S1, Supporting Infor-
mation). Comparing the predicted and observed drug sensitiv-
ity according to Pearson correlation coefficient (PCC) and Root
Mean Square Error (RMSE), the optimal learning rate for com-
plete training was determined as 1e-3, with a batch size of 1024
(Figure S2, Supporting Information). Finally, using the prede-
termined optimal parameters, DeepCCDS was retrained on the
training set. The obtained trainedmodel demonstrated highly ac-
curate prediction in the test set (PCC = 0.93, p-value < 2.2e-16;
Figure 3A). To demonstrate the predictive robustness of DeepC-
CDS, we performed a 10-times Monte Carlo cross-validation on
all samples from the GDSC dataset, using an 8:1:1 ratio for train-
ing, validation, and test sets. We then performed model train-
ing and tests on these newly partitioned sets 10 times. We found
that the natural logarithm of the half-maximal inhibitory con-
centration (LN IC50) predicted from these ten models exhibited
strong and consistent correlations with the observed values (PCC
= 0.93, p-value < 2.2e-16; Figure S3, Supporting Information),
demonstrating the robustness of DeepCCDS. To verify the gen-
eralizability of DeepCCDS, we selected two external validation
sets (CCLE and NCI60) to assess its predictive performance. In
CCLE, the drug sensitivity predicted by DeepCCDS showed high
consistency with observed LN IC50 (PCC = 0.77, p-value < 2.2e-
16; Figure 3B). Despite the NCI60 dataset using GI50 to reflect
cell growth inhibition, we could still confirm the overall consis-
tency of DeepCCDS predictions (PCC = 0.46, p-value < 2.2e-16;
Figure 3C). The ability of DeepCCDS to predict across these two
metrics demonstrates its capacity to capture general characteris-
tics of drug efficacy.
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Figure 1. The schematic overview of DeepCCDS.

We then conducted ablation experiments to analyze the in-
fluence of different features on model performance. Specifically,
we designed three variants of our method by training the model
with different feature sets. The first variant was trained using
only gene mutation data. The second variant was trained using
only pathway activity data. The third variant was trained using
a combination of gene mutation and gene expression data. We
trained each variant and evaluated their predictive performance
on both internal and external validation datasets. Here, we em-
ployed both regression-based and classification-based evaluation
strategies to assess the model performance (see the Methods sec-
tion). We found that all three variants led to decreased predictive
performance compared to the original DeepCCDS model, with
the most significant drop observed when using only mutation
data (Figure S4, Supporting Information). This is likely because
mutation status, typically encoded as binary values, fails to re-
flect the functional heterogeneity of different mutations and can-
not capture their downstream regulatory consequences. In con-

trast, DeepCCDS integrates drivermutations with their regulated
pathways, effectively combining the source of cancer signals with
their functional impact. The superior performance of DeepCCDS
across both internal and external validation datasets underscores
the importance of this integrative feature strategy in accurately
modeling cancer drug response.
We conducted benchmark tests comparing DeepCCDS with

several well-cited deep learning frameworks (DeepTTA,[9]

DeepDR,[10] Precily,[1] BANDRP,[22] DeepCDR[23] and
DrugCell[24]) and traditional machine learning algorithms
(lasso, ridge, elastic net regression models, and SVM). These
deep learning-based frameworks use genomic (DrugCell),
transcriptomic (DeepTTA, Precily), or multi-omics features
(DeepDR, BANDRP, DeepCDR) to characterize cell lines, which
is also a common usage in existing methods. The DeepCCDS
framework designed here not only integrates different omics
information but also considers the perturbation of driver signals
on transcription. This multi-level integration can capture more
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Figure 2. Characterizing cancer driver signals as biological pathways. A) 38 pathways were determined based on enrichment analysis thresholds (ES >

0, FDR < 0.2) to characterize cancer driver signals. The leading-edge subset includes cancer driver genes and other genes influenced by driver genes.
B) A pathway-gene relationship network, where each pathway is connected to its corresponding leading-edge subset genes. The size of a pathway node
indicates its degree, with larger nodes representing higher degrees.
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Figure 3. Comprehensive performance evaluations of DeepCCDS. A–C) The correlation between predicted LN IC50 by DeepCCDS and observed LN IC50
across different datasets: (A) GDSC, (B) CCLE, and (C) NCI 60. D) Comparison of overall performance (average PCC or RMSE) in different approaches
across three datasets. “Our average” refers to the mean overall performance of DeepCCDS and DeepCCDS265, while “Other average” refers to the
mean overall performance of the other methods. E) The detailed PCC of different approaches in three datasets. F) Comparison of different approaches,
showing the mean (bars) and standard deviation (error bars) of prediction performance for each cell line across all drugs and for each drug across all
cell lines.
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detailed and accurate cell-drug response information. Here,
we compare the predictive performance of DeepCCDS with
these outstanding computational frameworks across different
datasets. It is important to note that the DeepDR method can
only predict cell sensitivity to a specific set of 265 drugs. To
ensure a fair comparison, we defined DeepCCDS265 as the re-
sults of DeepCCDS predicting cell sensitivity to these 265 drugs,
specifically for comparison with DeepDR. We first compared the
overall performance of DeepCCDS with other approaches across
the GDSC, CCLE, and NCI60 datasets. The results demonstrate
that our approach achieved superior average performance across
the three datasets. Specifically, our approach achieved a 25%
improvement in PCC and a 16% reduction in RMSE compared
to other approaches (Figure 3D, “Our average” versus “Others
average”). In terms of classification performance, compared to
other approaches, our approach achieved improvements of 11%
and 30% in the AreaUnder the Receiver Operating Characteristic
Curve (AUROC) and F1 scores (Figure S5A,B, Supporting Infor-
mation, “Our average” versus “Others average”), respectively. For
each evaluation metric, our approach consistently demonstrates
a substantial advantage over the other 10 approaches across three
datasets (Figure 3E and Figure S5C,E, Supporting Information).
Next, we assessed the application of different approaches in

specific cells or drugs. We calculated the PCC, RMSE, AUROC
and F1 score between predicted and observed response for each
cell across all drugs, then computed the mean and standard de-
viation of the four metrics for all cells, respectively. The same
process was applied to each drug. Comparisons across differ-
ent datasets consistently demonstrated that DeepCCDS achieved
the best performance compared to other approaches for spe-
cific cells or drugs (Figure 3F and Figures S6–S8, Supporting
Information). In conclusion, comprehensive model evaluation
has demonstrated the superior performance of DeepCCDS over
other approaches in multiple aspects.
Previously, we trained and compared the models using the

“mix split” strategy, where the training, validation, and test sets
were randomly divided. To enable a more comprehensive com-
parison with existing models, we incorporated three additional
data-splitting strategies: “cell line split,” “drug split,” and “both
split.” The “cell line split” ensures that cell lines in the train-
ing, validation, and test sets do not overlap, allowing us to assess
the model’s ability to generalize to completely unseen cell lines.
Similarly, the “drug split” ensures that no drugs overlap across
the datasets, evaluating the model’s performance in predicting
new drugs. The “both split” strategy is the most stringent, ensur-
ing that cell line–drug pairs are entirely non-overlapping across
the training, validation, and test sets, thus testing the model’s
ability to predict novel cell line–drug pairs in a real-world set-
ting. We trained our model under these different split strategies
and evaluated its predictive performance across various datasets,
comparing it against other methods. Under various data splitting
strategies, our method achieved competitive performance. Espe-
cially in the external validation cohort, our method consistently
outperformed all other approaches in different evaluation met-
rics (Figures S9–S11, Supporting Information). These results in-
dicate the robustness and strong generalizability of our method
across diverse experimental settings.
In addition to performance, we also evaluated and compared

the computational efficiency of different deep learning methods.

To ensure a fair comparison, we trained these models under
the same hardware environment (NVIDIA GeForce RTX 4090
GPU and 128GB of RAM) and software environment (Python 3.8
and Pytorch 2.1.0). The DeepCDR method was excluded from
the comparison because it was trained using an older version
of Python and the “TensorFlow” environment. The results show
that our method has significantly lower runtime and memory
usage compared to most other deep learning-based approaches
(Figure S12, Supporting Information).

2.3. High-Quality Feature Representation

Our previous results indicated that traditional machine learning
methods demonstrated weaker predictive capabilities compared
to deep learning approaches, particularly in the internal valida-
tion set. This may be attributed to the high signal-to-noise ra-
tio resulting from the high dimensionality of input features.[25]

Upon completing DeepCCDS training, the model acquired the
ability to learn the embedded features of cells and drugs. Thus,
the original mutations and drug structures were represented by
30 embedded mutation and drug features for each drug-cell pair
based on the mutation and drug structure autoencoders, respec-
tively, and the original expression features were represented by
38 pathway activities (called embedded expression features). Con-
sequently, we trained machine learning models using these em-
bedded features. We observed that models trained on embedded
features exhibited superior predictive performance (higher PCC
and lower RMSE) compared to those trained on original features
(Figure 4A,B). Subsequently, we calculated the average sensitivity
of each cell to all drugs and categorized cells into sensitive and
insensitive groups based on the first quartile of this average sen-
sitivity. We utilized the t-SNE algorithm to visualize cell distribu-
tion based on both original and embedded features. We observed
low separation between the sensitive and insensitive groups in
the 2D space of original features (Figure 4C,D). In contrast, the
two cell groups were well-differentiated in the 2D space of em-
bedded features (Figure 4E,F). Moreover, Figure 4E,F reveals that
expression embedding features (38 pathways) provide clearer cell
localization compared to mutation embedding features. This fur-
ther suggests that integrating the cancer driver signals can ef-
fectively enhance the characterization of cellular states. In sum-
mary, these results demonstrate that DeepCCDS can generate
high-quality feature representations.

2.4. Analysis of Embedded Feature Importance through Model
Interpretation

2.4.1. Gene Expression Embedding Features

We conducted a feature importance analysis to further un-
derstand the relationship between the high-quality features
learned by DeepCCDS and drug sensitivity. First, using the IG
method,[26] we calculated the IG score for each dimension (path-
way) of the gene expression embedding vector (see Methods sec-
tion). We ranked the 38 pathways based on the absolute IG scores
and presented the top ten. As shown in Figure 4G, the Insulin se-
cretion pathway demonstrates the highest positive contribution
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Figure 4. Analysis of embedded features generated by DeepCCDS. A,B) Comparison of (A) PCC and (B) RSEM of drug sensitivity prediction between
machine learningmodels trained on original and embedded features. C–F) Cell distribution based on t-SNE algorithm. The cell distribution is respectively
based on original mutation features (C), original expression features (D), embedded mutation features (E), and embedded expression features (F). The
cells were divided into sensitive and insensitive groups based on the quartiles of average sensitivity. G) The IG scores and activity heatmap of the top
10 pathways that are most important for the prediction of drug sensitivity.
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to predicting LN IC50, suggesting it may reduce drug sensitivity.
Previous studies have shown that the Insulin secretion pathway
is abnormally expressed in certain cancer types, and this abnor-
mality may lead to drug resistance.[27] Other top positive path-
ways, such as the ErbB signaling pathway and Estrogen signaling
pathway, have also been proven to be associated with resistance
mechanisms in previous research.[28,29] These pathways exhibit
higher activity in the insensitive group (Figure S13A–C, Support-
ing Information). Pathways with negative contributions, such as
Natural killer cell-mediated cytotoxicity, have been shown to en-
hance the effectiveness of cancer chemotherapy.[30] This pathway
demonstrates significantly higher activity in the sensitive group
(Figure S13D, Supporting Information).

2.4.2. Gene Mutation Embedding Features

The mutation embedding features are 30D vectors from the en-
coder network of mutation autoencoder. Each dimension of the
vector lacks inherent biological meaning and cannot directly re-
flect specific biological mechanisms. To deepen our understand-
ing of these non-biological entities, we first performed path-
way annotation for each dimension (see Methods section). We
annotated biological pathways for each embedding dimension
based on enrichment analysis with FDR < 0.05. A total of 17 di-
mensions were successfully annotated. We discovered that each
dimension possesses unique pathway annotations (Figures 5A
and S14, Supporting Information). Notably, dimensions 1 and
15 (hereafter called dim 1 and 15) shared only two biological
mechanisms. This phenomenon indicates that the autoencoder
in DeepCCDS can effectively capture the main variations in the
original data, reflecting more comprehensive biological informa-
tion in a low-dimensional representation, and contributing to im-
proved predictive power for drug sensitivity. Moreover, we found
that these two dimensions showed overall opposite directions of
correlation with different pathway categories (Figures S15 and
S16, Supporting Information). Pathways in the “Cellular Pro-
cesses” and “Genetic information processing” categories have
been confirmed by multiple studies to potentially lead to drug
resistance in cancer cells.[31–34] For example, the cell cycle path-
way belonging to the “Cellular Processes” category can lead to
drug resistance by disrupting checkpoint functions and induc-
ing cells to enter a quiescent state.[35] The DNA replication path-
way in the “Genetic information processing” category can lead to
drug resistance by enhancing DNA repair mechanisms, allowing
cancer cells to fix DNA damage caused by chemotherapy, thereby
evading cell death .[36,37] Both pathways are positively correlated
with dim 1. The phagosome pathway in the “Cellular Processes”
category can induce drug resistance by using tumor-associated
macrophages to create an immunosuppressive environment and
reduce drug effectiveness.[38] Proteasome pathways in the “Ge-
netic information processing” category contribute to drug resis-
tance bymaintaining protein homeostasis in cancer cells.[39] Both
pathways are negatively correlated with dim 15. These suggest
that dims 1 and 15 may influence cancer drug responses in op-
posite directions (inhibition or promotion).
Next, we analyzed the importance of these features on drug

sensitivity. As shown in Figure 5B, we calculated and displayed
the IG scores for the 17 dimensions. Interestingly, we observed

that dims 1 and 15 had substantial importance. We then calcu-
lated the importance of 17 dimensions for sensitivity to specific
drugs. Dim 1 consistently showed positive contributions to pre-
dicting sensitivity for all drugs, while dim 15 showed negative
contributions (Figure 5C). We then calculated the PCC between
the feature values of each dimension in cells and the LN IC50 val-
ues of each drug acting on the cells (Figure 5D). Since lower IC50
values indicate higher sensitivity to drugs, negative correlations
in the figure suggest that the feature dimension promotes drug
response, while positive correlations indicate that the dimension
inhibits drug response. The results of importance and correlation
analyses are consistent with the above findings, which show that
dims 1 and 15 inhibit and promote cancer cell drug sensitivity,
respectively.
Among these drugs, Vinblastine and Buparlisib showed the

strongest correlations with dim 1 (PCC= 0.57 and 0.60, p-value<
2.2e-16; Figure 6A,B; Table S2, Supporting Information). Specif-
ically, the sensitivity of almost every cell type to these two drugs
showed significant positive correlations with feature values of
dim 1. This suggests that dim 1 may have a strong inhibitory ef-
fect on the efficacy of these two drugs, with cells having lower
feature values of dim 1 being more likely to respond to these
drugs. Through comparison, we found that dim 1 has signifi-
cantly lower feature values in the “breast,” “central nervous sys-
tem,” and “haematopoietic and lymphoid” cell lines (Figure 6C).
Notably, Vinblastine and Buparlisib have been approved for treat-
ing breast cancer, neuroblastoma, and various lymphomas. Sim-
ilarly, we analyzed Trametinib and Selumetinib, which showed
the strongest negative correlations with dim 15 (PCC = −0.52
and −0.48, p-value < 2.2e-16; Figure 6D,E; Table S3, Support-
ing Information). This implies that cell types with higher fea-
ture values in dim 15 may be more sensitive to these two drugs.
Dim 15 has significantly higher feature values in “large Intes-
tine,” “skin,” “peripheral nervous system,” and “head and neck”
cell lines (Figure 6F). We also confirmed through DrugBank
that Trametinib has been approved for treating colorectal cancer
and melanoma, while Selumetinib is used for treating neurofi-
bromatosis. In conclusion, through model interpretation, we re-
vealed the relationship between embedded features and cell sen-
sitivity to drugs. Dims 1 and 15 have the potential to be used inde-
pendently for predicting and characterizing drug sensitivity and
may aid in screening for new drug indications.

2.5. Predicting Patient Clinical Response

In this study, we developed DeepCCDS aimed at predicting the
sensitivity of cell lines to drugs. Through previous analyses, we
have comprehensively demonstrated the framework’s robust pre-
dictive performance and interpretability. Here, we further ap-
plied it to solid tumor patient samples from TCGA database
to explore the model’s applicability in real clinical patients. We
first obtained patient-drug combinations with recorded drug re-
sponses from the TCGA based on previous research.[40] After
screening and preprocessing, a total of 1489 patient-drug com-
binations were retained, comprising 817 unique patients and 25
unique drugs. We applied DeepCCDS to these combinations to
predict their LN IC50 values and compared them with the sen-
sitivity of cell lines to the same 25 drugs in GDSC and found

Adv. Sci. 2025, 2416958 2416958 (8 of 16) © 2025 The Author(s). Advanced Science published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advancedscience.com


www.advancedsciencenews.com www.advancedscience.com

Figure 5. Biological significance of mutation embedding features. A) Biological annotation of mutation embedding features. Different colored regions
represent different annotation pathway categories. Annotations for dimensions 1 and 15 are highlighted with bold borders. Detailed annotation names
are shown in Figure S9, Supporting Information. B) The importance (IG score) of biologically annotated feature dimensions to drug sensitivity prediction.
C) Heatmap of the importance (IG scores) for each dimension associated with sensitivity of specific drugs. D) Heatmap of the correlation (PCC) between
feature values across different dimensions and drug sensitivity of cells.
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Figure 6. Correlation analysis of dimensions 1 and 15 with the specific drugs. A) The correlation between the feature values of dimension 1 and LN
IC50 of cells to Vinblastine. The bar charts inside the scatter plot represent correlations within specific cell types. The red stars indicate a significant
correlation between feature values in particular cell types and drug sensitivity. B) The correlation between the feature values of dimension 1 and LN IC50
of cells to Buparlisib. C) Comparison of feature values of dimension 1 across different cell types. We used a two-sided Wilcoxon rank-sum test to assess
the differences between each group and all other patients (**** p < 1e-4; *** 1e-4 < p < 1e-3; ** 1e-3 < p < 1e-2; * 1e-2 < p < 5e-2). D) The correlation
between the feature values of dimension 15 and LN IC50 of cells to Trametinib. E) The correlation between the feature values of dimension 15 and LN
IC50 of cells to Selumetinib. F) Comparison of feature values of dimension 15 across different cell types.
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consistency in the prediction results (Figure 7A). Moreover, the
predicted LN IC50 of responsive patient-drug combinations was
significantly lower than that of non-responsive patient-drug com-
binations (Wilcoxon’s p-value = 9.1e-05; Figure 7B).
We next focused on the prediction of patient response to

cisplatin, as it is a widely used chemotherapeutic agent play-
ing a crucial role in the treatment of multiple solid tumors.[41]

We observed DeepCCDS could still accurately predict patient
response to cisplatin treatment (Wilcoxon test p-value = 7.1e-
03; Figure 7C). We then obtained multi-omics data and clin-
ical information for all TCGA patients who received cisplatin
treatment from cBioPortal. After predicting these patients’ sen-
sitivity to cisplatin treatment and dividing them into sensitive
and insensitive groups, we found that patients predicted to be
sensitive had significantly better progression-free survival (PFS)
compared to insensitive patients (Log-rank test p-value = 6.9e-
04; Figure 7D). Previous studies have shown that cervical squa-
mous cell carcinoma (CESC) patients receiving cisplatin treat-
ment exhibit the best progression-free survival compared to
other cancers.[42] We compared the predicted LN IC50 of the
top five prevalent cancers treated with cisplatin (Figure S17,
Supporting Information) and observed that CESC patients in-
deed had the lowest predicted LN IC50 values (Figure 7E). Sur-
vival analysis indicated that CESC patients responsive to cis-
platin treatment had markedly better progression-free survival
(Figure 7F).
To further evaluate the clinical application potential of Deep-

CCDS, we compared it with other state-of-the-art methods de-
signed for drug response prediction. We focused on two repre-
sentative approaches, DrugFormer[43] and SpaRx,[44] which are
specifically developed to leverage single-cell data for modeling
drug response and have shown strong translational potential. A
recent study based on single-cell analysis provided an in-depth in-
vestigation into cisplatin resistance in bladder cancer patients.[45]

Therefore, we selected bladder cancer as the disease context and
used corresponding single-cell and spatial transcriptomics data
to train DrugFormer and SpaRx (see Methods section). Both
models were implemented using the publicly available code pro-
vided by the authors on GitHub. Finally, we applied the trained
models to predict cisplatin response in TCGA Bladder Urothelial
Carcinoma (BLCA) patients and evaluated the predictions against
the actual clinical response labels using Fisher’s exact test and F1
score. As shown in Figure S18, Supporting Information, Deep-
CCDS achieved the most significant p-value and the highest F1
score, demonstrating its superior predictive power and highlight-
ing its promise for clinical applications.
In previous results, we demonstrated that model interpreta-

tion could identify feature dimensions characterizing cancer cell
sensitivity. Here, we used the IG algorithm to calculate the contri-
bution of feature dimensions to the clinical response to cisplatin.
Dim 1 and 15 still showed relatively high contributions, but the
most important dimensions were dim 4 and 20 (Figure S19,
Supporting Information). We applied dims 4 and 20 to patients
receiving cisplatin treatment and found that the feature values
of these dimensions significantly differed between the cisplatin-
sensitive and cisplatin-insensitive groups (Figure 7G,H). These
results indicate that, despite the challenges in translating from
cell lines to solid tumor patients, DeepCCDS can still provide
valuable information for predicting drug responses in solid tu-

mor patients and possess certain clinical relevance and inter-
pretability.

3. Discussion

In cancer treatment, predicting individual drug responses is cru-
cial for guiding personalized therapeutic strategies, enhancing
treatment efficacy, and reducing unnecessary side effects. How-
ever, this task remains challenging due to cancer’s complexity.
Our study introduces the DeepCCDS framework, which inte-
grates deep learning technology with prior biological network
knowledge to predict cancer cell line sensitivity to drugs using
multi-omics features.
We recognize that the mutation status of cancer driver genes

plays a crucial role in drug sensitivity prediction, as these muta-
tions often serve as key drivers of cancer initiation and progres-
sion. However, cancer is not driven by isolated genetic mutations
but rather by the synergistic effects of multiple mutations that
perturb cellular signaling networks. Relying solely on individual
genemutations is insufficient to capture the complexity of cancer
regulation. To address this, we utilized a prior knowledge-based
network to identify the cascade effects of cancer driver mutations
on downstream molecules, referred to as cancer driver signals,
and mapped these signals onto biological pathways. Ultimately,
we incorporated both driver gene mutations and pathway fea-
tures to characterize cancer cell lines. While mutations provide
the source of oncogenic signals, pathways reveal their functional
consequences. This integration effectively captures key regula-
tory processes and signal transduction cascades, enabling the
model to develop a more precise understanding of cancer reg-
ulatory mechanisms.
In a comprehensive evaluation using cell-drug paired data

from the GDSC database, DeepCCDS demonstrated remark-
able accuracy in predicting drug sensitivity, achieving a high
PCC and low RMSE. The model’s robustness was validated
through multiple random data splits, while its generalizabil-
ity was confirmed on independent external datasets CCLE and
NCI60. Through comparison, DeepCCDS outperformed other
deep learning methods and traditional machine learning algo-
rithms in overall prediction accuracy and in predicting sensitiv-
ity for specific cells or drugs (Figure 3 and Figures S5–S8, Sup-
porting Information). Furthermore, our approach achieves high
predictive performance while maintaining faster training speed
and lower memory consumption (Figure S12, Supporting Infor-
mation). This can be attributed to two main factors: first, the
use of relatively lightweight model architecture, and second, our
approach’s ability to distill high-dimensional information from
a large and complex prior knowledge network into biologically
meaningful, low-dimensional representations. This process sig-
nificantly reduces the computational and memory demands dur-
ing the subsequent model training phases.
Through deep learning techniques, DeepCCDS successfully

generated low-dimensional embedded features of cells, which
outperformed original high-dimensional features in predicting
drug sensitivity. Visualization using t-SNE algorithm confirmed
these embedded features’ ability to distinctly separate sensitive
and insensitive cell populations, indicating high-quality feature
representation. Comprehensive model interpretation based on
these high-quality features revealed complex biological mecha-
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Figure 7. Application of DeepCCDS in solid tumor samples. A) Comparing the LN IC50 distributions of cell lines in GDSC to 25 drugs with the predicted
sensitivity distributions of TCGA patients to the same 25 drugs. B) Comparing the predicted LN IC50 between all responders and non-responders. C)
Comparing the predicted LN IC50 between all responders and non-responders of cisplatin. D) Kaplan–Meier analysis shows the PFS differences between
predicted cisplatin-sensitive and insensitive patient groups. E) Comparing predicted LN IC50 to cisplatin among patients with different types of cancer.
We used a two-sided Wilcoxon rank-sum test to assess the differences between each group and all other patients (**** p < 1e-4; ** 1e-3 < p < 1e-2).
F) Kaplan–Meier analysis shows the PFS differences between predicted cisplatin-sensitive and insensitive CESC patient groups. G,H) Comparing the
feature values of dimension 4 (G) and dimension 20 (H) between predicted cisplatin-sensitive and insensitive patient groups.
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nisms underlying drug responses. Specifically, we observed that
some pathways, such as the Insulin secretion pathway, ErbB sig-
naling pathway, Estrogen signaling pathway, and Natural killer
cell-mediated cytotoxicity, with high contributions to predictions
indeed participate in the regulation of drug sensitivity.[27–30] The
activity of these pathways shows significant differences between
sensitive and insensitive cell populations. For mutation embed-
ding features, represented by 30 neurons in the bottleneck layer,
we performed pathway annotation to link abstract mathematical
representations with actual biological processes. The unique an-
notations for each dimension reflected DeepCCDS’s capability to
capture key variations in the original data. Notably, we found that
dimensions 1 and 15 are highly correlated with cell sensitivity to
drugs, and they exhibit completely opposite trends. Leveraging
the feature values, these two dimensions have shown potential
in inferring drug indications.
We applied DeepCCDS to patient-drug combinations in the

TCGAdatabase, successfully extending themodel’s predictive ca-
pabilities from cell lines to clinical patients. The predicted drug
sensitivity demonstrated significant concordance with the actual
clinical response. This capability is crucial for guiding person-
alized treatment decisions. We used cisplatin as a case study to
illustrate that DeepCCDS can predict the clinical responses of
patients to specific treatments. To further validate the accuracy
of the predictions, we conducted survival analyses. The results
indicated that patients predicted to be sensitive exhibited signif-
icantly better PFS, strongly supporting DeepCCDS’s prediction
in clinical patients. In specific cancer types, the model’s predic-
tions were highly consistent with known clinical observations,
underscoringDeepCCDS’s ability to capture cancer-specific char-
acteristics, which is essential for optimizing treatment strategies.
Through model interpretation, the study identified feature di-
mensions that significantly contribute to clinical responses to cis-
platin. This provides new insights into the mechanisms of drug
response and may serve as new biomarkers for patient stratifica-
tion and treatment response prediction.
However, the dependency of DeepCCDS on the quality of prior

knowledge networks still exists. Although we used a high-quality
network in this study, we fully acknowledge that prior knowledge
networks are continually evolving and may not capture all rel-
evant or context-specific regulatory events. In future work, we
plan to integrate more comprehensive and up-to-date interac-
tion databases to improve network completeness. Additionally,
we will explore confidence-weighted to better handle uncertainty
and variability in the quality of prior knowledge, thereby enhanc-
ing the reliability of our model. In conclusion, DeepCCDS suc-
cessfully combines deep learning techniques with prior biolog-
ical knowledge, offering a novel perspective for understanding
and predicting cancer treatment responses. DeepCCDS goes be-
yond the conventional use of isolated genetic markers by char-
acterizing cancer driver signals as biological entity representa-
tions using prior biological knowledge. Comprehensive valida-
tion and evaluation have shown that DeepCCDS outperforms ex-
isting state-of-the-art methods in predicting drug sensitivity in
cancer cell lines, with significant potential in drug repurposing
and clinical decision-making. We believe this study can bridge
the gap between complex biological systems and computational
techniques, aiming to revolutionize drug sensitivity prediction
and pave the way for truly personalized cancer treatment.

4. Experimental Section
Preparing Data from GDSC: This work utilized the extensive cancer

cell line and drug resources provided by the GDSC database (https://www.
cancerrxgene.org) as our training data. From themutation annotation files
of cell lines in the database, this work retained only the mutation infor-
mation of experimentally validated cancer driver genes collected from the
COSMIC Cancer Gene Census (CGC).[46] The annotation files in GDSC
were converted into a binary mutation matrix, with rows and columns
representing genes and cells, respectively, using 1 and 0 to indicate non-
synonymous mutations and wild type. This work then obtained the TPM
(transcript per million) normalized gene expression matrix and applied a
log transformation. Only cell lines common to both matrices were used,
and this work removed cancer types with fewer than 10 cell lines, result-
ing in 866 cell lines covering 22 cancer types. This work had provided the
detailed category distribution of these cell lines in the Supplementary Ma-
terials (Figure S20A, Supporting Information).

For drug features, this work queried Simplified Molecular Input Line
Entry System (SMILES) strings for drugs using the Python library Pub-
ChemPy. Some drugs with no matches were manually annotated. Fi-
nally, SMILES strings were successfully retrieved for 413 drugs. These
SMILES strings were then converted into Morgan molecular fingerprints
of size 1024 using the R package “rcdk” (https://cran.r-project.org/web/
packages/rcdk/), serving as molecular structure features for the drugs.
Like the cell lines, these drugs also encompass various types, includ-
ing different anatomical classifications (ATC) and mechanisms of action.
This work annotated the functional information of these drugs using the
ChEMBL database (Table S4, Supporting Information).

This work paired all cell lines and drugs, matching drug sensitivity in-
formation from GDSC1 and GDSC2. The natural logarithm of the half-
maximal inhibitory concentration (LN IC50) was chosen as the measure
of drug sensitivity. For cell-drug pairs duplicated in GDSC1 and GDSC2,
the LN IC50 value from the newer version (GDSC2) was retained. After all
preprocessing steps, a total of 319 543 cell-drug pairs were retained. This
work used 80% of all cell-drug pairs (255 628 pairs) as a training set, 10%
as a validation set (31 963 pairs) tomonitor the training process to prevent
overfitting, and 10% (31 952 pairs) as a test set to evaluate performance
(Figure 1A).

Preparing External Validation Sets: This work selected material re-
sources provided by the CCLE database (https://sites.broadinstitute.
org/ccle)[7] and NCI60 dataset[47] for external validation of our model.
The NCI60 dataset was obtained from the R packages rcellminer
(https://bioconductor.org/packages/release/bioc/html/rcellminer.html)
and rcellminerData (https://bioconductor.org/packages/release/data/
experiment/html/rcellminerData.html). For the drugs in the NCI60
dataset, this work directly utilized the SMILES information provided in
the rcellminerData package. Both CCLE and NCI60 datasets underwent
the same preprocessing as the GDSC data for all cell and drug features.
Finally, the CCLE dataset retained 10 778 cell-drug pairs, encompassing
466 cell lines and 24 drugs. NCI60 contains a diverse array of over 50 000
drugs. This work retained only 867 drugs that were FDA-approved and
had accessible SMILES information. The NCI60 dataset preserved 50 055
cell-drug pairs, covering 60 cell lines and 867 drugs (Figure 1A). This
work also presented detailed information on the cell lines and drugs
in the Supplementary Materials (Figure S20B,C and Tables S5 and S6,
Supporting Information).

Preparing Datasets for Evaluating Clinical Potential: This work obtained
TCGApatient-drug combinationswith documented drug response records
from a previous study byDing et al.[40] This study had already standardized
the initially inconsistent drug name records. Clinical responses were cate-
gorized according to the Response Evaluation Criteria in Solid Tumors (RE-
CIST) standard[48] as responders (including complete response and par-
tial response) and non-responders (including stable disease and disease
progression). After filtering for patients with both expression andmutation
data available, this work retained a final dataset comprising 1489 patient-
drug combinations, involving 817 unique patients and 25 distinct drugs.
This work then collected data on 557 cisplatin-treated TCGA patients via
cBioPortal.[49] These patients had multi-omics features (including gene
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expression and mutation information) and clinical information but lacked
known drug response labels. This work further obtained scRNA-seq data
from bladder cancer patients treated with cisplatin (GSE192575[45]) for
model training of the DrugFormer[43] method. This work extracted gene
expression profiles of bladder cancer cell lines treated with cisplatin from
theGDSC database and utilized a dataset (VISDP000028) from the CROST
database[50] that includes both single-cell RNA sequencing and spatial
transcriptomics data from bladder cancer patients for model training of
the SpaRx[44] method.

Design of DeepCCDS—The framework Overview: DeepCCDS is a novel
deep learning framework designed to predict drug sensitivity for certain
cell-drug pairs by integrating cellular features (gene expression and muta-
tion profiles) and drug features (molecular fingerprints). The framework
comprised four main components: a prior knowledge network, two au-
toencoders, and a feedforward neural network. The prior knowledge net-
work was employed to characterize cancer driver signals as pathways
(Figure 1B). Pathway activities were utilized as learned embedded repre-
sentations of the cell’s gene expression profile. The mutation and drug au-
toencoders were used to learn embedded representations of driver gene
mutation states and molecular fingerprints, respectively. These three em-
bedded vectors were then concatenated and fed into the feedforward neu-
ral network to generate a predicted drug sensitivity value, expressed as the
LN IC50 (Figure 1C). The training process of DeepCCDS is divided into
two main stages: 1) the pre-training stage, which involves characterizing
cancer driver signals as pathway representations and determining param-
eters of neural networks; 2) the complete training stage, in which the entire
DeepCCDS framework undergoes end-to-end training using features and
the determined parameters.

Characterizing Cancer Driver Signals through a Prior Knowledge Network:
A crucial component of DeepCCDS was characterizing cancer driver sig-
nals as biological pathways (Figure 1B). This work first captured the cancer
driver signals via the prior knowledge network. To do this, this work em-
ployed a comprehensive human protein-protein interaction (PPI) network
curated by a previous study,[51,52] which integrates data from 12 differ-
ent sources. This integration helps ensure broad coverage of biologically
meaningful interactions. To further enhance the reliability of the network,
this work retained only those interactions supported by at least two inde-
pendent sources, thus ensuring high-confidence associations. The largest
connected subgraph, extracted using the R package “igraph,” comprised
12 436 gene nodes and 83 020 edges. This work defined an adjacency ma-
trix P to represent this PPI network, where rows and columns correspond
to gene symbols, and binary values 1 and 0 indicate the presence or ab-
sence of edges between genes, respectively. Diagonal elements were set
to 0 to eliminate self-connections.

Cancer driver genes obtained from the CGC were mapped onto the PPI
network. A total of 534 genes were successfully mapped and used as seed
nodes to compute their extensive influence on other genes in the network
using the Random Walk with Restart (RWR) algorithm. This work defined
a probability vector c0 to represent the initial state of genes in the network
before RWR. All driver genes were assigned equal probabilities summing
to 1, while all other genes were initialized with a probability of 0. The RWR
process is represented by the adjacency matrix P, the initial probability
vector c, and an iterative diffusion function:

ct+1 = (1 − 𝛽) Tct + 𝛽c0,where Tij =
Pij

∑Ng

j=1 Pij
(1)

Here, T is the probability transition matrix obtained by column-
normalizing matrix P. Tij represents the probability of signal transmission
from gene j to gene i. Ng denotes the total number of genes in the net-
work. 𝛽 is the restart probability, controlling diffusion depth, set to 0.9 in
this study. ct corresponds to the probability vector encompassing node
probabilities at step t. The iteration stops when the difference between
ct+1 and ct is less than 1e-10. The final probability ci in vector c repre-
sents the strength of the signal transmitted to gene i. For characterizing
the signals as pathway representations, we obtained 323 pathways from
the KEGG database.[53] Using these pathways and the gene ranked list c,

we applied Gene Set Enrichment Analysis (GSEA) to calculate enrichment
scores (ES) and statistical significance for all pathways. Based on criteria
of ES > 0 and FDR < 0.2, we ultimately characterize driver signals with
38 pathways. Upon inputting the gene expression matrix of cell lines into
DeepCCDS, it was first transformed into an activity score matrix for these
38 pathways using the single sample GSEA (ssGSEA) algorithm. The path-
way activity score can reflect the cellular environment after perturbation by
driver genes, which is then used for drug sensitivity prediction (Figure 1C).

Parameter Setting of Mutation and Drug Fingerprint Autoencoders:
DeepCCDS employs autoencoders to learn embedded representations of
cell mutation information and drug molecular fingerprints. This work first
pre-trained two autoencoders to determine the optimal parameters for
these encoding networks. The input dimensions were 534 for the muta-
tion autoencoder and 1024 for the drug autoencoder. Each autoencoder
consisted of a three-layer encoder (two hidden layers and one bottleneck
layer) and a symmetric decoder. Each layer incorporated batch normaliza-
tion to enhance model generalization and uses the Rectified Linear Unit
(ReLU) activation function to handle non-linearity. Each decoder’s output
layer incorporated a sigmoid activation function to ensure that the out-
puts range between 0 and 1. This work defined the parameter space for
the number of neurons in each layer as follows: hidden layer 1 {300, 200,
100}, hidden layer 2 {100, 50, 30}, bottleneck layer {30, 20, 10}. A grid
searchmethodwas employed to explore different parameter combinations
within this fixed parameter space. For each autoencoder, we trained every
parameter combination for 50 epochs using the training set. The model
was implemented and optimized by ADAM optimizer in the Python library
PyTorch 2.1.0. This work used the binary cross-entropy (BCE) as the loss
function to optimize the autoencoder. The parameter combination yield-
ing the lowest reconstruction BCE on the test set was selected for the com-
plete DeepCCDS training (300, 100, and 30 neural, respectively; Figure S1,
Supporting Information).

Parameter Setting of Feedforward Neural Network: The feedforward
neural network was designed to predict drug sensitivity for specific cells. It
comprised an input layer consisting of a concatenated vector of embedded
representations, two hidden layers each with the same number of neurons
as the input layer, and an output layer with a single neuron without an acti-
vation function. The input layer integrated the embedded representations
of gene expression, mutations, and molecular fingerprints. Each hidden
layer included batch normalization and uses the ReLU activation function.
The network’s output was designed to fit the LN IC50 value, representing
the cell’s sensitivity to the drug. The absence of an activation function in
the output layer allowed for unrestricted prediction of the continuous LN
IC50 value.

Complete Training and Evaluation: The complete DeepCCDS frame-
work inputs gene expression andmutation profiles of cell lines andmolec-
ular fingerprints of drugs and predicts drug sensitivity (LN IC50) as out-
put. This work randomly selected 80% of all GDSC cell-drug pairs (255 628
pairs) as a training set, 10% as a validation set (31 963 pairs) to monitor
the training process to prevent overfitting, and 10% (31 952 pairs) as a
test set to evaluate performance. The training process was implemented
in an end-to-end manner using PyTorch 2.1.0 and optimized by ADAM op-
timizer. The optimization objectives of the model encompass two primary
components: minimizing the loss between predicted and observed drug
sensitivities and minimizing the reconstruction loss of the autoencoders.
The inclusion of reconstruction losses encouraged the network to extract
meaningful encodings from the input cell line and drug features. A uni-
fied loss function encapsulated all the optimization objectives, which is
iteratively minimized across training batches to calibrate the model pa-
rameters:

Loss = MSE
(
S − S′

)
+MSE

(
RC − R

′
C

)
+MSE

(
RD − R

′
D

)
(2)

where S and S′ denote the observed and predicted drug sensitivities, re-
spectively. RC and R

′
C represent the input and reconstructed features of the

mutation autoencoder. Similarly, RD and R′D signify the input and recon-
structed features of the drug autoencoder. This work then employed a grid
search on the training set to determine the optimal hyperparameters. The
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hyperparameter space included: learning rates {1e-2, 1e-3, 1e-4}, batch
sizes: {256, 512, 1024}. This work trained every parameter combination for
50 epochs. The combination with the lowest PCC and RMSE between pre-
dicted and observed LN IC50 values in the test set was selected (learning
rate = 1e-3, batch size = 1024; Figure S2, Supporting Information). This
work then trained the model using the selected hyperparameters. To mit-
igate overfitting, this work implemented early stopping with a patience of
10 epochs (i.e., training stopped if the validation loss did not improve for
10 consecutive epochs). The maximum number of epochs was set to 100.
This work assessed DeepCCDS’s predictive performance on both the test
set and external validation datasets (CCLE andNCI60) with PCC andRMSE
between predicted and observed LN IC50 values. To assess themodel’s ro-
bustness, we conducted Monte Carlo cross-validation with 10 iterations,
each using a random 8:1:1 split of data for training, validation, and testing.

Benchmarking Drug Sensitivity Prediction: To evaluate the performance
of DeepCCDS in the context of existing approaches, this work con-
ducted a comprehensive benchmarking study. This work compared Deep-
CCDS against well-cited deep learning frameworks, including DeepTTA,[9]

DeepDR,[10] Precily,[1] BANDRP,[22] DeepCDR,[23] and DrugCell,[24] as
well as several traditional machine learning algorithms. All models were
trained and tested on the same datasets used for DeepCCDS to ensure
a fair comparison. This work implemented each deep learning frame-
work using the code provided in their respective publications. For a
more thorough assessment and benchmarking of the model’s predic-
tive capability, this work used evaluation metrics based on regression
(PCC and RMSE) and classification (AUROC and F1 score). For the
calculation of classification metrics, this work classified cell-drug pairs
into sensitive and insensitive groups using the top quartile threshold
of the actual IC50 values. This work then applied this threshold to the
predicted IC50 values to assign each sample to a sensitive or insen-
sitive group. Based on this classification, this work computed the AU-
ROC and F1 scores to evaluate prediction performance. DeepDR was de-
signed to predict sensitivity for a fixed set of 265 drugs due to its ar-
chitectural constraints. For a fair comparison, this work used the fully
trained DeepCCDS to generate predictions for only these 265 drugs, la-
beling this subset of predictions as “DeepCCDS265.” This work also
benchmarked against traditional machine learning algorithms, including
lasso, ridge, elastic net regression models, and support vector machines
(SVM). These were implemented using the “glmnet” package in the R
environment.

Model Interpretation—Feature Importance Evaluation: DeepCCDS
takes two types of cell line features as input: gene expression and
mutation profiles. The gene expression profiles were embedded into 38
pathways, while the gene mutation profiles were embedded into 30 bottle-
neck layer neurons. To explore the relationship between each embedded
feature and drug sensitivity, this work employed the Integrated Gradients
(IG) method.[26] IG attributes the model’s prediction for its input features
by computing gradients for each input and measures the change in the
output based on the small changes in the input. This work calculated the
average attribution of features across all samples to represent the global
importance, termed the IG score. The calculation was performed through
the “IntegratedGradients” class from the Python “Captum” library. Nega-
tive IG scores suggested that the feature reduces the IC50 value, indicating
increased drug sensitivity because lower IC50 values mean higher drug
efficacy. Conversely, positive IG scored imply the feature decreased drug
sensitivity.

Biological Annotation of Mutation Embedding Features: To interpret the
biological significance of the 30D embedded features derived from driver
gene mutations, this work developed an annotation process. Let E be the
matrix of mutation embedding features and G be the gene expression
matrix. The rows of matrix E represent 30 embedded features, while the
rows of matrix G represent genes. This work calculated the correlation
between each row of matrices 𝐸 and G, resulting in matrix C. Here, Cij
is the PCC between the ith feature dimension and the expression of jth

gene. For each row of matrix C, this work performed a descending sort
and conducted GSEA using 323 KEGG pathways. Based on FDR < 0.01,
this work filtered the biological pathway annotations related to each feature
dimension.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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